000 04067cam a2200397 i 4500
001 000576190
003 OCoLC
005 20240105151233.0
008 120917t20102010si a rb 001 0 eng d
020 _a9789814313124
020 _a9814313122
035 _a378030
035 _a378031
035 _a378032
040 _aSINTU
_bspa
_cSINTU
_erda
_dUIASF
050 4 _aTA 347.T4
_bL43.2010
100 1 _aLebedev, L. P.
_eautor
245 1 0 _aTensor analysis with applications in mechanics /
_cLeonid P. Lebedev, Michael J. Cloud, Victor, A. Eremeyev.
260 _aSingapore ;
_aHackensack, NJ :
_bWorld Scientific,
_c2010, ©2010.
300 _axiv, 363 páginas :
_bilustraciones ;
_c24 cm
336 _atexto
_2rdacontent
337 _asin medio
_2rdamedia
338 _avolumen
_2rdacarrier
504 _aIncluye referencias bibliográficas (p. 355-357) e índice.
505 0 _a1. Preliminaries. 1.1. The vector concept revisited. 1.2. A first look at tensors. 1.3. Assumed background. 1.4. More on the notion of a vector. 1.5. Problems -- 2. Transformations and vectors. 2.1. Change of basis. 2.2. Dual bases. 2.3. Transformation to the reciprocal frame. 2.4. Transformation between general frames. 2.5. Covariant and contravariant components. 2.6. The cross product in index notation. 2.7. Norms on the space of vectors. 2.8. Closing remarks. 2.9. Problems -- 3. Tensors. 3.1. Dyadic quantities and tensors. 3.2. Tensors from an operator viewpoint. 3.3. Dyadic components under transformation. 3.4. More dyadic operations. 3.5. Properties of second-order tensors. 3.6. Eigenvalues and eigenvectors of a second-order symmetric tensor. 3.7. The Cayley-Hamilton theorem. 3.8. Other properties of second-order tensors. 3.9. Extending the Dyad idea. 3.10. Tensors of the fourth and higher orders. 3.11. Functions of tensorial arguments. 3.12. Norms for tensors, and some spaces. 3.13. Differentiation of tensorial functions. 3.14. Problems -- 4. Tensor fields. 4.1. Vector fields. 4.2. Differentials and the nabla operator. 4.3. Differentiation of a vector function. 4.4. Derivatives of the frame vectors. 4.5. Christoffel coefficients and their properties. 4.6. Covariant differentiation. 4.7. Covariant derivative of a second-order tensor. 4.8. Differential operations. 4.9. Orthogonal coordinate systems. 4.10. Some formulas of integration. 4.11. Problems -- 5. Elements of differential geometry. 5.1. Elementary facts from the theory of curves. 5.2. The torsion of a curve. 5.3. Frenet-Serret equations. 5.4. Elements of the theory of surfaces. 5.5. The second fundamental form of a surface. 5.6. Derivation formulas. 5.7. Implicit representation of a curve; contact of curves. 5.8. Osculating paraboloid. 5.9. The principal curvatures of a surface. 5.10. Surfaces of revolution. 5.11. Natural equations of a curve. 5.12. A word about rigor. 5.13. Conclusion. 5.14.
505 0 _aProbs -- 6. Linear elasticity. 6.1. Stress tensor. 6.2. Strain tensor. 6.3. Equation of motion. 6.4. Hooke's law. 6.5. Equilibrium equations in displacements. 6.6. Boundary conditions and boundary value problems. 6.7. Equilibrium equations in stresses. 6.8. Uniqueness of solution for the boundary value problems of elasticity. 6.9. Betti's reciprocity theorem. 6.10. Minimum total energy principle. 6.11. Ritz's method. 6.12. Rayleigh's variational principle. 6.13. Plane waves. 6.14. Plane problems of elasticity. 6.15. Problems -- 7. Linear elastic shells. 7.1. Some useful formulas of surface theory. 7.2. Kinematics in a neighborhood of [symbol]. 7.3. Shell equilibrium equations. 7.4. Shell deformation and strains; Kirchhoff's hypotheses. 7.5. Shell energy. 7.6. Boundary conditions. 7.7. A few remarks on the Kirchhoff-Love theory. 7.8. Plate theory. 7.9. On Non-classical theories of plates and shells.
650 0 _aCalculus of tensors.
650 4 _aCálculo de tensores
700 1 _aCloud, Michael J.
_eautor
700 1 _aEremeyev, Victor A.
_eautor
905 _a01
942 _cNEWBFXC1
999 _c544344
_d544344
980 _851
_gRonald RUIZ