UNIVERSIDAD IBEROAMERICANA

Estudios con Reconocimiento de Validez Oficial por Decreto Presidencial del 3 de abril de 1981

"REDISTRIBUCIÓN DEL VOLUMEN LIBRE EN UNA MEMBRANA POLIMÉRICA POR ELIMINACIÓN DE GRUPOS LATERALES VÍA REACCIÓN QUÍMICA EN EL ESTADO SÓLIDO"

TESIS

Que para obtener el grado de DOCTORA EN CIENCIAS DE LA INGENIERÍA

Presenta

SUZANNE SÁNCHEZ GARCÍA

Director Dr. Francisco Alberto Ruiz Treviño

Lectores Dr. Mikhail Zolotukhin Dr. Manuel de Jesús Aguilar Vega

Ciudad de México

Dedicado con todo mi amor y admiración a mi esposo Carlos Enrique y a mis hermosos hijos Fernanda y Enrique

Agradecimientos

Al Dr. Francisco Alberto Ruiz Treviño por ser un gran mentor, guía, consejero y amigo.

Al Dr. Mikhail Zolotukhin por todo su apoyo, asesoría y disposición en el diseño de experimentos para la realización de este proyecto.

Al Dr. Manuel de Jesús Aguilar Vega por compartir su experiencia para enriquecer el presente trabajo.

A la Dra. Lilian Iraís Olvera Garza por su apoyo en los análisis de resonancia magnética nuclear y difracción de rayos X, pero sobre todo por sus consejos y conocimientos compartidos.

Al Mtro. Raymundo Marcial Hernández por su valiosa colaboración en la síntesis de los polímeros.

A mis colegas de laboratorio por brindarme su amistad y permitirme aprender junto con ustedes.

A mi querida Universidad Iberoamericana por concederme el privilegio de ser formada dentro de sus aulas.

A mis padres, por seguir caminando a lado mío apoyándome incondicionalmente.

A CONACyT por la beca otorgada para el desarrollo de mis estudios de doctorado con número de becario 172260.

Artículos publicados

Sánchez-García, S.; Ruiz-Treviño, F. A.; Aguilar-Vega, M. J.; Zolotukhin, M. G. Gas Permeability and Selectivity in Thermally Modified Poly(oxyindole biphenylylene) Membranes Bearing a tert-Butyl Carbonate Group. *Ind. Eng. Chem. Res.* **2016**, *55*, 7012-7020.

Congresos asistidos

5º Congreso Nacional de la Sociedad Mexicana de Ciencia y Tecnología de Membranas, A.C. Redistribución del volumen libre en una membrana polimérica por eliminación de grupos laterales vía reacción química en el estado sólido. Cd. de México. 15-17 de julio 2015.

XXVIII Congreso Nacional de la Sociedad Polimérica de México, A.C. Estudio de la cinética de reacción de los grupos termolábiles en una membrana polimérica en el estado sólido. San Miguel de Allende, Guanajuato. 4-7 de noviembre 2015.

Resumen

Las propiedades de permeabilidad y selectividad ideal para gases puros en un nuevo polioxiindolbifenilileno que contiene una unidad de tert-butil carbonato como grupo lateral, el PN-BOC, han sido medidas a 35 °C y 2 atm. Se determinó que la degradación térmica del grupo termolábil, BOC, a temperaturas y tiempos moderados, es útil para el diseño de membranas que pudieran superar la típica relación opuesta entre permeabilidad y selectividad. Análisis de TGA, FTIR-ATR, y DSC revelan que los tratamientos térmicos del polímero PN-BOC a 150 °C y por periodos cortos de tiempo, 5-60 min, permiten el diseño de membranas con mejores combinaciones de selectividad-permeabilidad que las del polímero precursor PN-BOC. Para el par de gases O₂/N₂, y CO₂/N₂, las membranas tratadas térmicamente por 5 min, PN-BOC₅, muestran coeficientes de permeabilidad de O₂ y CO₂ mayores por un factor de 2.3 con respecto a aquellos medidos en el PN-BOC, mientras que la selectividad para ambos pares de gases permanece constante. Con respecto al par de gases H₂/CH₄ y CO₂/CH₄, las membranas tratadas térmicamente por 60 min, PN-BOC₆₀, muestran coeficientes de permeabilidad de H₂ y CO₂ mayores que los del PN-BOC precursor por un factor de 1.7 y 1.4 respectivamente, mientras que la selectividad se incrementa en un 45% para H_2/CH_4 y un 24% para CO₂/CH₄.

Índice general

Resumeniv	,
Índice generalv	
Índice de tablas vii	i
Índice de figurasx	
CAPÍTULO 1 INTRODUCCIÓN 1	
1.1 Panorama general 2	
1.2 Polímeros térmicamente modificados 4	
1.3 Alcance del proyecto	
1.4 Hipótesis 10)
1.5 Objetivos)
1.5.1 Objetivo general 10)
1.5.2 Objetivos particulares 10)
1.6 Meta	l
1.7 Referencias	2
CAPÍTULO 2 FUNDAMENTOS TEÓRICOS	5
2.1 Membranas para la separación de gases	3
2.2 Modelo solución difusión	3
2.2.1 Conceptos y ecuaciones)
2.3 Teoría del volumen libre	l
2.4 Obstáculos para la separación de gases a través de membranas 22	2
2.4.1 Envejecimiento físico 22	2
2.4.2 Plastificación	5
2.5 Referencias	3
CAPÍTULO 3 DESARROLLO EXPERIMENTAL	2
3.1 Materiales y síntesis del polímero	3
3.1.1 Materiales	3
3.1.2 Síntesis del polímero	3
3.2. Formación de membranas y tratamientos térmicos	ł
3.3 Caracterización de las membranas poliméricas	5
3.3.1 Resonancia magnética nuclear de protón	5
3.3.2 Espectroscopía de infrarrojo	5

3.3.3 Calorimetría diferencial de barrido	36
3.3.4 Densidad	36
3.3.5 Fracción de volumen libre	36
3.3.6 Difracción de rayos X	37
3.3.7 Evaluación de las propiedades de transporte de gases	38
3.4 Referencias	40
CAPÍTULO 4 ANÁLISIS Y DISCUSIÓN DE RESULTADOS	42
4.1 Síntesis del polímero	43
4.2 Caracterización termogravimétrica	44
4.3 Cinéticas de reacción (descomposición térmica del grupo BOC	
versus tiempo	46
4.4 Caracterización de las membranas poliméricas	50
4.5 Propiedades de transporte de gases	53
4.6 Difracción de rayos X	66
4.7 Efecto de la temperatura en las propiedades de transporte de	
gases	67
4.8 Análisis ¹ H NMR como técnica para determinar el grado de	
conversión del polímero	71
4.9 Referencias	77
CAPÍTULO 5 CONCLUSIONES	80
5.1 Recomendaciones finales	83
APÉNDICES	85
Apéndice A Columna de densidad variable	86
A.1 Generalidades	86
A.2 Preparación de la muestra	86
A.3 Preparación de la columna	86
A.3 Referencias	90
Apéndice B Fracción de volumen libre	91
B.1 Volumen ocupado de los polímeros puros PN-H y PN-BOC	91
B.2 Volumen ocupado de las membranas del polímero PN-BOC	
tratadas a 150 °C por distintos tiempos	93

B.3 Fracción de volumen libre de los polímeros puros PN-BOC y PN-	
H y de las membranas de PN-BOC tratadas a 150 °C por distintos	
tiempos	94
B.4 Referencias	94
Apéndice C Equipo de permeación de gases	95
Apéndice D Espectros de difracción de rayos X	96
Apéndice E Hojas de cálculo para las propiedades de permeación de	
gases	101

Índice de tablas

Tabla 1.1. Principales empresas y membranas comerciales para la	
separación de gases	3
Tabla 2.1. Clasificación de las membranas de acuerdo al tamaño de sus	
cavidades para la separación de especies químicas	17
Tabla 4.1. Conversión isotérmica a 150 °C del polímero PN-BOC en	
copolímeros [(PN-H)x-(PN-BOC)y]n y eventualmente a tiempo infinito al	
polímero PN-H	49
Tabla 4.2. Coeficientes de permeabilidad y factores de separación ideal,	
medidos a 35 °C y 2 atm, así como el volumen específico y la fracción	
de volumen libre determinados para el polímero PN-BOC puro y para	
las membranas del polímero PN-BOC tratadas isotérmicamente a 150	
°C por diferentes tiempos	56
Tabla 4.3. Coeficientes de difusión determinados a 35°C y 2 atm para	
las membranas del polímero puro PN-BOC y para las de PN-BOC	
tratadas térmicamente a 150 °C por diferentes tiempos, así como su	
contribución al factor de separación ideal para diferentes pares de	
gases	64
Tabla 4.4. Coeficientes de solubilidad determinados a 35°C y 2 atm para	
las membranas del polímero puro PN-BOC y para las de PN-BOC	
tratadas térmicamente a 150 °C por diferentes tiempos, así como su	
contribución al factor de separación ideal para diferentes pares de	
gases	65
Tabla 4.5. Valores de 2 θ y <i>d</i> -spacing para los polímeros el polímero PN-	
BOC y las membranas de PN-BOC tratadas térmicamente a 150 °C por	
diferentes tiempos	66
Tabla 4.6. Grado de conversión del grupo BOC por integración de las	
señales del espectro ¹ H NMR para los copolímeros [(PN-H)x-(PN-	
BOC)y]n	72
Tabla A.1. Estándares empleados para la calibración la columna de	
densidad variable	88

Tabla A.2. Densidad del polímero PN-BOC y de las membranas de PN-	
BOC tratadas térmicamente a 150 °C por diferentes tiempos	90
Tabla B.1. Volumen de van der Waals de los grupos funcionales que	
conforman la estructura del polímero PN-H	92
Tabla B.2. Volumen de van der Waals de los grupos funcionales que	
conforman la estructura del polímero PN-BOC	92
Tabla B.3. Peso molecular y volumen ocupado de los polímero PN-BOC	
y PN-H	93
Tabla B.4. Volumen ocupado para los polímeros puros PN-BOC y PN-	
H y para los copolímeros [(PN-H)x-(PN-BOC)y]n	93
Tabla B.5. Fracción de volumen libre para los polímeros puros PN-BOC	
y PN-H y para los copolímeros [(PN-H)x-(PN-BOC)y]n	94

Índice de figuras

Figura 1.1. Mecanismo general de conversión térmica de algunas	
poliimidas precursoras (PIOFG) a su respectivo polímero TR	6
Figura 1.2. Relación selectividad-permeabilidad para el par de gases	
CO ₂ /CH ₄ para diferentes polímeros TR reportados en la literatura	7
Figura 1.3. Esquema de reacción para la síntesis del polímero puro PN-	
BOC a partir del polímero puro PN-H y di-tert-butil dicarbonato (BOC2O).	9
Figura 1.4. Descomposición térmica del polímero puro PN-BOC para	
producir copolímeros [((PN-H)x-PN-BOC)y]n por la eliminación parcial de	
grupos laterales BOC, y finalmente a tiempo infinito con la eliminación	
total del BOC, la obtención el polímero puro PN-H	9
Figura 2.1. Esquema para un proceso de separación por membrana	16
Figura 2.2. Envejecimiento físico en polímeros vítreos	23
Figura 2.3. Efecto del tiempo (i) y temperatura de tratamiento térmico (ii)	
en el envejecimiento físico de una membrana de poliimida comercial	24
Figura 2.4. Ejemplo de una isoterma de permeación de CO ₂ como una	
función de la presión de alimentación del gas	26
Figura 3.1. Esquema de reacción para la síntesis del polímero puro PN-	
BOC a partir del polímero puro PN-H y di-tert-butil dicarbonato (BOC2O).	33
Figura 3.2. Preparación de membranas en forma de películas densas	
del polímero PN-BOC	34
Figura 4.1. Espectro ¹ H NMR para el polímero puro PN-BOC (solución	
en CDCl3)	43
Figura 4.2. Análisis termogravimétricos, con una rampa de	
calentamiento de 10 °C/min en una atmósfera de nitrógeno para una	
membrana recién formada de PN-BOC por evaporación de solvente	
(curva 1), para una membrana de PN-BOC secada a 80 °C por 24 h en	
condiciones de vacío (curva 2), y para una membrana de PN-BOC	
secada primero a 80 °C por 24 h y posteriormente a 90°C por 24 h en	
condiciones de vacío (curva 3)	45
Figura 4.3. Isotermas de descomposición del polímero PN-BOC	
determinadas por análisis termogravimétricos en una atmósfera de	

nitrógeno. Para alcanzar la temperatura objetivo y poder estandarizar el procedimiento, se empleó una rampa de calentamiento de 20 °C/min. 47 La pérdida de peso teórica se incluye como referencia..... Figura 4.4. Esquema de los análisis de TGA para el polímero PN-BOC tratado isotérmicamente a 150 °C en una atmósfera de nitrógeno..... 49 Figura 4.5. Espectros FTIR-ATR para el polímero puro PN-BOC y para los polímeros PN-BOC tratados térmicamente a 150 °C en diferentes tiempos. El espectro FTIR-ATR para el polímero puro PN-H es incluido como referencia..... 51 Figura 4.6. Análisis DSC con una rampa de calentamiento de 10 °C/min desde temperatura ambiente hasta 400 °C y en una atmósfera de nitrógeno para el polímero puro PN-BOC y para los polímeros PN-BOC tratados térmicamente a 150 °C por diferentes tiempos..... 52 Figura 4.7. Relación selectividad-permeabilidad para los pares de gases O₂/N₂, de lado izquierdo y CO₂/N₂, de lado derecho, medidos a 35 °C y 2 atm, en membranas de PN-BOC y PN-H puros, así como en membranas de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos. Los números de los círculos blancos representan el tiempo de tratamiento térmico. Los cuadros sólidos corresponden a la PI-g-CD tratada térmicamente por 1 h a diferentes temperaturas..... 60 Figura 4.8. Relación selectividad-permeabilidad para los pares de gases H₂/CH₄, de lado izquierdo y CO₂/CH₄, de lado derecho, medidos a 35 °C y 2 atm, en membranas de PN-BOC y PN-H puros, así como en membranas de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos. Los números de los círculos blancos representan el tiempo de tratamiento térmico. Los cuadros sólidos corresponden a la PI-g-CD tratada térmicamente por 1 h a diferentes temperaturas..... 61 Figura 4.9. Relación selectividad-permeabilidad para los pares de gases O₂/N₂, de lado izquierdo y CO₂/N₂, de lado derecho, medidos a 35 °C y 2 atm, en membranas de BOC₅, PN-BOC₂¹⁷⁰ y PN-BOC₁²⁰⁰..... 69 Figura 4.10. Relación selectividad-permeabilidad para los pares de gases H₂/CH₄, de lado izquierdo y CO₂/CH₄, de lado derecho, medidos a 35 °C y 2 atm, en membranas de BOC₅, PN-BOC₂¹⁷⁰ y PN-BOC₁²⁰⁰..... 70

xi

Figura 4.11. Espectro ¹ H NMR para el polímero PN-BOC ₅ (solución en	
Piridina-d₅)	73
Figura 4.12. Espectro ¹ H NMR para el polímero PN-BOC ₁₀ (solución en	
Piridina-d₅)	74
Figura 4.13. Espectro ¹ H NMR para el polímero PN-BOC ₁₅ (solución en	
Piridina-d₅)	75
Figura 4.14. Espectro ¹ H NMR para el polímero PN-BOC ₆₀ (solución en	
Piridina-d₅)	76
Figura A.1. Esquema de la columna de densidad variable	87
Figura A.2. Relación densidad-posición de los estándares empleados	
para calibrar la columna de densidad variable	89
Figura B.1. (a) unidad repetitiva del polímero PN-H y (b) unidad	
repetitiva del polímero PN-BOC	91
Figura C.1. Diagrama del equipo de permeación de gases	95
Figura D.1. Espectro de difracción de rayos X con radiación CuK α y una	
longitud de onda de 1.54 Å para el polímero PN-BOC	96
Figura D.2. Espectro de difracción de rayos X con radiación $CuK\alpha$ y una	
longitud de onda de 1.54 Å para el polímero PN-BOC $_5$	97
Figura D.3. Espectro de difracción de rayos X con radiación CuK α y una	
longitud de onda de 1.54 Å para el polímero PN-BOC10	98
Figura D.4. Espectro de difracción de rayos X con radiación CuK α y una	
longitud de onda de 1.54 Å para el polímero PN-BOC ₁₅	99
Figura D.5. Espectro de difracción de rayos X con radiación CuK α y una	
longitud de onda de 1.54 Å para el polímero PN-BOC60	100
Figura E.1. Hoja de cálculo para H $_2$ en membrana de PN-BOC	101
Figura E.2. Hoja de cálculo para O2 en membrana de PN-BOC	102
Figura E.3. Hoja de cálculo para N $_2$ en membrana de PN-BOC	103
Figura E.4. Hoja de cálculo para CH4 en membrana de PN-BOC	104
Figura E.5. Hoja de cálculo para CO2 en membrana de PN-BOC	105
Figura E.6. Hoja de cálculo para H2 en membrana de PN-BOC5	106
Figura E.7. Hoja de cálculo para O2 en membrana de PN-BOC5	107
Figura E.8. Hoja de cálculo para N2 en membrana de PN-BOC5	108
Figura E.9. Hoja de cálculo para CH₄ en membrana de PN-BOC₅	109

Figura E.10. Hoja de cálculo para CO2 en membrana de PN-BOC5	110
Figura E.11. Hoja de cálculo para H2 en membrana de PN-BOC10	111
Figura E.12. Hoja de cálculo para O2 en membrana de PN-BOC10	112
Figura E.13. Hoja de cálculo para N2 en membrana de PN-BOC10	113
Figura E.14. Hoja de cálculo para CH4 en membrana de PN-BOC10	114
Figura E.15. Hoja de cálculo para CO2 en membrana de PN-BOC10	115
Figura E.16. Hoja de cálculo para H ₂ en membrana de PN-BOC ₁₅	116
Figura E.17. Hoja de cálculo para O_2 en membrana de PN-BOC ₁₅	117
Figura E.18. Hoja de cálculo para N ₂ en membrana de PN-BOC ₁₅	118
Figura E.19. Hoja de cálculo para CH4 en membrana de PN-BOC15	119
Figura E.20. Hoja de cálculo para CO2 en membrana de PN-BOC15	120
Figura E.21. Hoja de cálculo para H_2 en membrana de PN-BOC ₆₀	121
Figura E.22. Hoja de cálculo para O_2 en membrana de PN-BOC ₆₀	122
Figura E.23. Hoja de cálculo para N $_2$ en membrana de PN-BOC $_{60}$	123
Figura E.24. Hoja de cálculo para CH4 en membrana de PN-BOC60	124
Figura E.25. Hoja de cálculo para CO2 en membrana de PN-BOC60	125

CAPÍTULO 1 INTRODUCCIÓN

1.1 Panorama general

La ciencia de polímeros y la tecnología de membranas han crecido sinérgicamente en las últimas décadas. Los novedosos procesos de separación con membranas no hubiesen podido existir sin la sofisticada gama de materiales proporcionados por la química de polímeros. Al mismo tiempo, el área de las membranas ha sido una importante fuerza motriz y justificación para muchos estudios fundamentales de los polímeros en estado sólido.¹

La separación de gases a través de membranas tomó relevancia a escala industrial en la década de los ochenta², durante este periodo hubo progresos muy significativos en prácticamente todos los aspectos de esta tecnología, incluyendo mejoras en los procesos de formación de membranas, gran variedad de estructuras químicas y físicas, así como nuevas configuraciones y aplicaciones.³ Sin embargo, a pesar de su gran potencial, actualmente la gama de materiales poliméricos empleados en las instalaciones destinadas para la separación de gases a través de membranas es muy reducida, tal y como lo muestra la Tabla 1.1.⁴

Cientos de nuevos polímeros han sido reportados en la literatura en los últimos años y muchos de ellos poseen valores de permeabilidad (P_i) y selectividad (α_{ij}) más atractivos que de los polímeros reportados en la Tabla 1. Resulta entonces sorprendente que sólo pocos materiales sean usados hoy en día para elaborar membranas a escala industrial. Sin embrago, la permeabilidad y selectividad son sólo dos de los criterios que deben tomarse en cuenta para elaborar una membrana útil desde el punto de vista comercial; otras características importantes son: excelente estabilidad térmica, química y mecánica así como la habilidad para formar membranas delgadas a bajo costo y que puedan ser empacadas en módulos con grandes superficies de contacto.

Compañía	Membrana	Principales aplicaciones
Permea (Air Products)	Polisulfona	
Medal (Air Liquid)	Poliimida/Poliarimida	-
IMS (Praxair)	Poliimida	Separación N ₂ /Aire
Generon (MG)	Policarbonato tetrabromado	Separación H ₂
GMS (Kvaerner)		
Separex (UOP)	Acetato de celulosa	Separación CO ₂ /CH ₄
Cynara (Natco)		
Aquilo	Oxido de polifenileno	
Parker- Hannifin	Poliimida	Separación vapor/gas
Ube		
GKSS Licensees	Caucho de silicona	Deshidratación de aire
MTR		

 Tabla 1.1. Principales empresas y membranas comerciales para la separación de gases.

La tecnología de separación a través de membranas compite favorablemente sobre algunos procesos convencionales (destilación criogénica, extracción, adsorción) por varias razones; poseen mayor eficiencia energética, simplicidad en su operación y poco requerimiento de espacio en operaciones a pequeña escala donde la pureza del gas a separar no es crítica. Sin embargo, dentro de las desventajas que tiene esta tecnología se encuentran: capacidad limitada para lograr alta pureza en la separación, falta de viabilidad en operaciones a gran escala y algunas veces elevados costos de inversión. Por todo lo anterior, resulta atractivo poder combinar los procesos de membrana con otros procesos de separación y de este modo optimizar al máximo costos energéticos y de operación.^{5, 6}

En general, las tecnologías de separación empleadas a lo largo del siglo XX fueron impulsadas por los avances en la industria petroquímica. Hoy, el futuro demanda nuevas aplicaciones y retos para estas tecnologías (y posiblemente otras) en diversas áreas como lo son: la farmacéutica, la biomédica, la microelectrónica, la aeroespacial, combustibles alternativos, nanotecnología, y biotecnología. En cuanto a materia ambiental concierne, se requiere el máximo ahorro de energía y procesos innovadores que sean amigables con el medio ambiente.⁷ En este sentido, los procesos de membrana son considerados como una de las tecnologías más prometedoras para la producción de hidrógeno de alta pureza,^{8,9} para la recuperación de dióxido de carbono con miras a combatir el calentamiento global¹⁰ y para la separación de etanol/agua con el fin de desarrollar biocombustibles renovables como una alternativa al petróleo.¹¹

1.2 Polímeros térmicamente modificados

La elección de los polímeros empleados para elaborar membranas es crucial en el desempeño de los procesos para la separación de gases, por esta razón los estudios en la relación estructura-propiedad han sido un área muy importante de investigación desde 1980.¹² De estos estudios está bien establecido que aquellos polímeros que ofrecen las mejores combinaciones de P_i y α_{ij} son generalmente vítreos con estructuras rígidas que limitan la densidad de empaque entre cadenas. En esencia, para estos polímeros las propiedades de transporte de gases dependen enormemente de la cantidad, tamaño y distribución de los elementos de volumen libre. En general, a mayor volumen libre mayor valor en los coeficientes difusivos (D_i) y por lo tanto mayor P_i , pero el tamaño y la interconexión entre los elementos de volumen libre pueden afectar también los valores de solubilidad (S_i) y tener un impacto considerable en la α_{ij} .¹³

Con el propósito de obtener nuevos polímeros con altos valores de volumen libre, así como una distribución apropiada del mismo que permitan propiedades de transporte de gases sobresalientes, recientemente una nueva categoría de polímeros térmicamente modificados en el estado sólido (TR) han llamado el interés en el campo de la ciencia y tecnología de polímeros debido a su atractivo desempeño para la separación de gases y por su excelente estabilidad química y térmica así como su resistencia a la plastificación.¹⁴ Los polímeros TR son polímeros aromáticos interconectados con anillos heterocíclicos preparados por la ciclación térmica de poliimidas con grupos *orto*-funcionales (PIOFG). Durante el proceso de ciclación térmica, el cual es promovido a temperaturas superiores a los 300°C y en una atmósfera inerte, los grupos funcionales ubicados en la posición orto, reaccionan con el anillo de la poliimida dando como resultado una estructura heterocíclica más rígida. Dependiendo del grupo funcional de las poliimidas precursoras (-OH, -SH o $-NH_2$) las subsecuentes estructuras térmicamente modificadas pueden ser polibenzoxazoles (PBO), polibenzotiazoles (PBT) o polipirroles (PPL).^{15, 16}

Debido a la naturaleza rígida de su cadena principal, los polímeros TR, carecen de procesabilidad pues no son solubles en solventes orgánicos comunes y sólo pueden disolverse en ácidos fuertes. Afortunadamente las poliimidas precursoras de estos polímeros son muy solubles en la mayoría de los solventes y por lo tanto es muy fácil formar tanto películas planas como fibras huecas. Por ello, las membranas de los polímeros TR pueden prepararse fácilmente mediante éste nuevo proceso de conversión térmica en el estado sólido a partir de las membranas formadas previamente con el polímero precursor.^{17, 18}

La Figura 1.1 muestra el mecanismo general de conversión térmica de algunas poliimidas precursoras (PIOFG) a su respectivo polímero TR.

Los altos valores de permeabilidad y selectividad característicos de estos polímeros son atribuidos a su inusual microestructura en la cual, la distribución, tamaño e interconexión de las cavidades depende del grado de conversión del polímero precursor durante el protocolo de reordenamiento térmico.¹⁹

5

Figura 1.1. Mecanismo general de conversión térmica de algunas poliimidas precursoras (PIOFG) a su respectivo polímero TR.

Como se observa en la Figura 1.2, la gran mayoría de los polímeros TR²⁰⁻²⁵ tienen propiedades de transporte por arriba de los upper bounds CO₂/CH₄ propuestos por Robeson en 1991 y 2008,^{26, 27} característica que hace de estos polímeros uno de los mejores materiales para el procesamiento de gas natural. La P_i , α_{ij} y posición relativa con respecto a los upper bound varían significativamente dependiendo de la naturaleza de la cadena principal del polímero precursor y del protocolo de tratamiento térmico.

Figura 1.2. Relación selectividad-permeabilidad para el par de gases CO_2/CH_4 para diferentes polímeros TR reportados en la literatura: (**•**) Ref. 20, (**•**) Ref. 21, (**•**) Ref. 22, (**•**) Ref. 23, (**X**) Ref. 24 y (**+**) Ref. 25.

1.3 Alcance del proyecto

El progreso en el desarrollo de nuevos polímeros TR, está principalmente enfocado en alterar térmicamente la estructura principal del polímero precursor, pero son pocos los estudios relacionados con la modificación química de una unidad polimérica por la descomposición térmica en el estado sólido de sus grupos laterales o termolábiles y su posterior efecto en las propiedades de transporte de gases una vez que estos grupos son térmicamente degradados. En esta dirección, Xiao y Chung reportaron un estudio que propone preparar membranas altamente permeables y selectivas por la descomposición térmica de poliimidas rígidas y entrecruzables injertadas con moléculas de β-ciclodextrina, una molécula termolábil y de grandes dimensiones.²⁸ En un trabajo similar, pero usando un polímero con un pequeño grupo lábil, Martinez-Mercado et al. estudiaron el efecto en las permeabilidades y selectividades de ciertos gases puros al tratar térmicamente membranas de un polioxiindolbifenilileno con un carbinol como grupo lateral,²⁹ el cual puede ser parcial o totalmente eliminado a temperaturas relativamente moderadas (160-180°C) y por periodos cortos de tiempo (< 1h). El resultado fueron propiedades de permeabilidad y selectividad más altas para las membranas del polioxiindolbifenilileno tratadas térmicamente que aquellas medidas para el polímero precursor.

En recientes investigaciones que describen la síntesis y caracterización de un polifenilquinoxalino injertado con unidades de tert-butil carbonato (BOC), se muestra que la degradación térmica del grupo BOC en CO₂ e isobuteno permite la formación de una estructura microporosa, la cual depende significativamente del número de grupos BOC injertados en la unidad repetitiva del polímero así como del protocolo térmico empleado para degradarlos.^{30,31} De este modo, como una continuación de la caracterización de las propiedades físicas y de transporte de gases para membranas de distintos polioxiindolbifenililenos con grupos termolábiles, el presente trabajo reporta la síntesis y las propiedades de transporte de gases puros para un nuevo polioxiindolbifenilileno; el polímero PN-BOC que porta una unidad

8

BOC como grupo lateral y cuyo esquema de reacción química se muestra en la Figura 1.3.

Figura 1.3. Esquema de reacción para la síntesis del polímero puro PN-BOC a partir del polímero puro PN-H y di-tert-butil dicarbonato (BOC₂O).

El polímero PN-BOC es tratado térmicamente para degradar al grupo BOC y aprender si su eventual degradación en CO₂ e isobutileno, acorde al esquema mostrado en la Figura 1.4, puede guiarnos en el diseño de materiales que puedan tener atractivos valores de P_i sin sacrificar α_{ij} y viceversa.

Figura 1.4. Descomposición térmica del polímero puro PN-BOC para producir copolímeros [((PN-H)_x-PN-BOC)_y]_n por la eliminación parcial de grupos laterales BOC, y finalmente a tiempo infinito con la eliminación total del BOC, la obtención el polímero puro PN-H.

1.4 Hipótesis

Es posible modificar las propiedades de permeación y selectividad de gases puros de una membrana densa, mediante la correcta manipulación, en el estado sólido, de los procesos de reacción química y posterior difusión de los grupos termolábiles de una cadena polimérica como una función del protocolo de tratamiento térmico.

1.5 Objetivos

1.5.1 Objetivo general

Establecer relaciones estructura/propiedad para la separación de gases puros en membranas de un nuevo polioxiindolbifenilileno el PN-BOC, cuyo volumen libre es redistribuido en el estado sólido por la eliminación de sus grupos termolábiles mediante un apropiado protocolo térmico.

1.5.2 Objetivos particulares

1. Establecer un protocolo de tratamiento térmico que permita estudiar de manera adecuada la cinética de descomposición de los grupos termolábiles en membranas del polímero PN-BOC en el estado sólido.

2. Evaluar algunas propiedades térmicas y volumétricas del polímero PN-BOC y sus membranas tratadas térmicamente para explicar la forma en la que han empacado las cadenas poliméricas en el estado sólido.

3. Evaluar el desempeño de las membranas del polímero puro PN-BOC y de sus membranas tratadas térmicamente para la separación de gases puros como H₂, O₂,

N₂, CH₄ y CO₂ y su relación con el grado de conversión de los grupos termolábiles BOC.

1.6 Meta

Los objetivos anteriores tienen como meta producir conocimiento científico (banco de datos útil), a partir de la construcción de relaciones estructura/propiedad en nuevos materiales poliméricos para la separación de gases, y con la comprobación de la hipótesis ofrecer una ruta alternativa para lograr una redistribución controlada del volumen libre en las membranas poliméricas vía descomposición química de grupos termolábiles en la cadena principal, lo anterior en el estado sólido.

1.7 Referencias

- (1) Koros, W.J.; Fleming, G.K.; Jordan, S.M.; Kim, T.H.; Hoehn, H.H. Polymeric membrane materials for solution-diffusion based permeation separations. *Prog. Polym. Sci.* **1988**, *13*, 339-401.
- (2) Pandey, P.; Chauhan, R.S. Membranes for gas separation. *Prog. Polym. Sci.* **2001**, *26*, 853-893.
- (3) Abedini, R.; Nezhadmoghadam, A. Application of membrane in gas separation processes: its suitability and mechanisms. *Petroleum & Coal* 2010, 52(2), 69-80.
- (4) Baker, R.W. Future directions of membrane gas separation technology. *Ind. Eng. Chem. Res.* **2002**, *41*, 1393-1411.
- Wang, Y. C.; Huang, S.H.; Hu, C. C.; Li, C. L.; Lee, K. R.; Liaw, D. J.; Lai, J. Y. Sorption and transport properties of gases in aromatic polyimide membranes. *J. Membr. Sci.* 2005, *248*, 15-25.
- (6) Nath, K. Membrane Separation Processes. Prentice–Hall. New Dheli, 2008.
- (7) Noble, R.D.; Agrawal, R. Separations research needs for the 21st century. Ind. Eng. Chem. Res. **2005**, *44*, 2887-2892.
- (8) Haryanto, A.; Fernando, S.; Murali, N.; Adhikari, S. Current status of hydrogen production techniques by steam reforming of ethanol: A review. *Energy & Fuels* **2005**, *19*, 2098-2106.
- (9) Adhikari,S.; Fernando, S. Hydrogen membrane separation techniques. *Ind. Eng. Chem. Res.* **2006**, *45*, 875-81.
- (10) Koros, W.J.; Coleman, M.R.; Walker, D.R.B. Controlled Permeability polymer membranes. *Annu. Rev. Mater. Sci.* **1992**, *22*, 47-89.
- (11) Sanders, D.F.; Smith, Z.P.; Guo, R.; Robeson, L.M.; McGrath, J.E.; Paul, D.R.; Freeman, B.D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. *Polymer* **2013**, *54*, 4729-4761.
- (12) Aoki, T. Macromolecular design of permselective membranes. *Prog. Polym. Sci.* **1999**, *24*, 951-993.

- (13) Shamsipur H.; Dawood, B. A.; Budd, P. M.; Bernardo, P.; Clarizia, G.; Jansen, J. C. Thermally rearrangeable PIM-Poylimides for gas separation membranes. *Macromolecules* **2014**, *47*, 5595-5606.
- (14) Wang, H.; Chung, T.S. The evolution of physicochemical and gas transport properties of thermally rearranged polyhydroxyamide (PHA). *J. Membr. Sci.* 2011, 385-386, 86-95.
- (15) Kim, S.; Lee, Y.M. Thermally rearranged (TR) polymer membranes with nonoengineered cavities tuned for CO₂ separation. *J. Nanopart. Res.* **2012**, *14*, 949-959.
- (16) Wang, H.; Liu, S.; Chung, T.S.; Chen, H.; Jean, Y.C.; Pramoda, K.P. The evolution of poly(hydroxyamide amic acid) to poly(benzoxazole) via stepwise thermal cyclization: Structural changes and gas transport properties. *Polymer* 2011, *52* (22), 5127-5138.
- (17) Kardash, I.Y.; Pravednikov, A.N. Aromatic polyimides containing hydroxyand methoxy groups. *Vysokomol Soyed* **1967**, *B9*, 873-876.
- (18) Tullos, G.L.; Mathias, L.J. Unexpected thermal conversion of hydroxycontaining polyimides to polybenzoxazoles. *Polymer* **1999**, *40*, 3463-3468.
- (19) Park, H.B.; Jung, C.H.; Lee, Y.M.; Hill, A.J.; Pas, S.J.; Mudie, S.T.; Van Wagner, E.; Freeman, B.D.; Cookson, D.J. Polymers with cavities tuned for fast selective transport of small molecules and ions. *Science* **2007**, *318*, 254-258.
- (20) Park, H.B.; Han, S.H.; Jung, C.H.; Lee, Y.M.; Hill, A.J. Thermally rearranged (TR) polymer membranes for CO₂ separation. *J. Membr. Sci.* 2010, 359, 11-24.
- (21) Jung, C.H.; Lee, J.E.; Han,S.H.; Park, H.B.; Lee, Y.M. Highly permeable and selective poly(benzoxazole-co-imide) membranes for gas separation. *J. Membr. Sci.* **2010**, *350*, 301-309.
- (22) Sanders, D.F.; Smith, Z.P.; Ribeiro, C.P., Jr.; Guo, R.; MacGrath, J.E.; Paul, D.R.; Freeman, B.D. Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3'-dihydroxy-4,4'-diamino-biphenyl (HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). *J. Membr. Sci.* **2012**, 409-410, 232-241.

- (23) Han, S.H.; Misdan, N.; Kim, S.; Doherty, C.M.; Hill, A.J.; Lee, Y.M. Thermally rearranged (TR) polybenzoxazole: Effects on diverse imidization routes on physical properties and gas transport behaviors. *Macromolecules* **2010**, *43*, 7657-7667.
- (24) Choi, J.I.; Jung, C.H.; Han, S.H.; Park, H.B.; Lee, Y.M. Thermally rearranged (TR) poly(benzoxazole-*co*-pyrrolone) membranes tuned for high gas permeability and selectivity. *J. Membr. Sci.* **2010**, *349*, 358-368.
- (25) Calle, M.; Lee, Y.M. Thermally rearranged (TR) poly(ether-benzoxazole) membranes for gas separation. *Macromolecules* **2011**, *44*, 1156-1165.
- (26) Robeson, L.M. Correlation of separation factor versus permeability for polymeric membrane. *J. Membr. Sci.* **1991**, *6*2, 165-185.
- (27) Robeson, L.M. The upper bound revisited. *J. Membr. Sci.* **2008**, *320*, 390-400.
- (28) Xiao, Y.; Chung, T.-S. Grafting thermally labile molecules on cross-linkable polyimide to design membrane materials for natural gas purification and CO₂ capture. *Energy Environ. Sci.* **2011**, *4*, 201-208
- (29) Martínez-Mercado, E.; Ruiz-Treviño, F.A.; Cruz-Rosado, A.; Zolotukhin, M.G.; González-Montiel, A.; Cárdenas, J.; Gaviño-Ramírez, R.L. Tuning gas and selectivity properties by thermal modification of the side groups of poly(oxindolebiphenylene)s membranes. *Ind. Eng. Chem. Res.* 2014, 53, 15755-15762.
- (30) Merlet, S.; Marestin, C.; Schiets, F.; Romeyer, O.; Mercier, R. Preparation and Characterization of Nanocellular Poly(phenylquinoxaline) Foams. A New Approach to Nanoporous High-Performance Polymers. *Macromolecules* **2007**, *40*, 2070-2078.
- (31) Merlet, S.; Marestin, C.; Romeyer, O.; Mercier, R. "Self forming" poly(phenylquinoxaline)s for the designing of macro and nanoporous materials. *Macromolecules* **2008**, *41*, 4205-4215.

CAPÍTULO 2 FUNDAMENTOS TEÓRICOS

2.1 Membranas para la separación de gases

Una membrana es una barrera selectiva entre dos fases, la cual debido a su naturaleza física y/o química así como a una fuerza motriz aplicada (presión, concentración, temperatura o potencial eléctrico) modera el transporte de especies químicas a través de ella.^{1, 2}

El esquema básico para un proceso de separación por membrana se muestra en la Figura 2.1.

En principio, cualquier material que forme una película lo suficientemente delgada y estable puede ser usado como membrana. Esto incluye metales, cerámicos, polímeros y monocapas moleculares de líquidos. Existen varias maneras de clasificar una membrana sintética, ya sea por la naturaleza del material con el que está elaborada, por su morfología, geometría o método de preparación. De este

modo, una membrana puede ser homogénea o heterogénea, de estructura simétrica o asimétrica, con carga o sin carga, densa o porosa, y sólida o líquida.^{3, 4}

Otra manera muy común de clasificar a las membranas es con base al tamaño de las cavidades por donde ocurre la separación, como se muestra en la Tabla 2.1.⁵

Tabla 2.1.	Clasificación	de las me	embranas	de acue	erdo	al tamaño	de sus	cavidades	para
		la sepa	ración de	especie	es qui	ímicas.			

Membrana	Tamaño de poro	Mecanismo de	Procesos de
	(nm)	separación	membrana
		Tamizado	Microfiltración
Porosa	5-500		
		Flujo tipo Poiseuille	Ultrafiltración
Microporosa	1-5	Flujo tipo Knudsen	Osmosis inversa
			Pervaporación
Densas	No hay poros	Solución-difusión	
			Separación de
			gases

Los polímeros vítreos son los materiales más usados para la separación de gases a través de membranas, pues ofrecen ventajas de manufactura sobre sustancias de origen inorgánico o metálico, además de poseer propiedades intrínsecas de permeabilidad y selectividad para moléculas gaseosas de diferentes tamaños y características.^{6, 7, 8}

La principal razón por la cual la permeación de gases a través de polímeros no fue empleada a escala industrial antes de la década de los ochenta fue porque los flujos que se lograban, incluso con la película más delgada que se podía producir a gran escala, estaban por debajo de los niveles requeridos en cualquier área de interés. El progreso real en esta área se dio con la formación de membranas asimétricas, las cuales se caracterizan por no tener una densidad uniforme a lo largo de su espesor, pues consisten de dos capas estructuralmente distintas. Estas membranas poseen una región porosa que actúa como soporte físico, proporcionándoles resistencia mecánica durante su manufactura y operación. La otra región consiste de una delgada película densa, conocida comúnmente como capa activa y que gobierna la velocidad del transporte molecular y logra la separación de las moléculas gaseosas.⁹

Así mismo, las propiedades intrínsecas del polímero juegan un rol fundamental, en el desempeño de esta tecnología,¹⁰ razón por la cual la química de polímeros busca siempre materiales que muestren combinaciones de permeabilidad y selectividad apropiadas para lograr la separación; que tengan un desempeño estable con respecto al tiempo (3-5 años) y que sean procesables, y fácilmente manufacturables.¹¹

2.2 Modelo solución-difusión

El modelo dual solución-difusión, es el modelo de transporte más ampliamente usado para describir el fenómeno de permeación a través de membranas poliméricas densas.¹²

El trabajo publicado por Sir Thomas Graham en 1866 estableció los principios básicos que soportan este modelo, y en la década de los 70 Paul y colaboradores proporcionaron evidencia teórica y experimental de que el modelo de solucióndifusión podría explicar el mecanismo de trasferencia de masa para ósmosis inversa, separación de gases y pervaporación.¹³

Como en cualquier otro modelo matemático, el modelo solución-difusión toma en cuanta ciertas consideraciones para el transporte de gases a través de membranas; la primera de ellas, es que hay un gradiente continuo de potencial químico que va de un lado de la membrana a otro, por lo tanto, las interfaces entre el fluido y el

material de la membrana están en equilibrio; la segunda consideración de este modelo es que la presión dentro de la membrana es uniforme y que el gradiente de potencial químico a través de la misma se expresa sólo en términos de un gradiente de concentración.¹⁴

El mecanismo de transferencia de masa de éste modelo ocurre en tres etapas: (i) el gas se disuelve en la superficie de la membrana expuesta a alta presión; (ii) el gas difunde a través de la matriz polimérica; y (iii) finalmente se desorbe en la cara de la membrana expuesta a baja presión. El paso intermedio, la difusión a través del polímero, es reconocido como el paso limitante para la permeación de gases a través de membranas poliméricas, y su vez, la principal restricción para la difusión es la dinámica de los segmentos de las cadenas poliméricas que permiten la apertura y cierre de espacios transitorios conocidos como elementos de volumen libre por donde las moléculas gaseosas ejecutan un movimiento tipo Browniano. En otras palabras, los movimientos segmentales y el empaquetado de las cadenas poliméricas moléculas gaseosas a través de polímeros.¹⁵

2.2.1 Conceptos y ecuaciones

La combinación de la primera ley de Fick que establece una relación lineal entre el flux de una molécula penetrante y su gradiente de concentración en ambos lados de la membrana y de la ley de Henry que expresa el equilibrio de la concentración en la interface fluido-membrana ^{16, 17} proporciona la expresión general para el coeficiente de permeabilidad:

$$J = \frac{DS(p_1 - p_2)}{l}$$
(2.1)

donde *J* es el es el flux difusivo de la molécula penetrante, p_1 y p_2 son las presiones en ambos lados de la membrana con espesor *l* y el producto entre el factor difusivo *D*, y el factor de solubilidad *S*, es el llamado coeficiente de permeabilidad *P*, de este modo: ²

$$P = DS \tag{2.2}$$

En el Sistema Internacional de Unidades, los coeficientes de permeabilidad son expresados en las siguientes unidades: ¹⁸

$$P = mol\left(m^2 s P a\right) \tag{2.3}$$

Sin embrago, es más común expresarlos en Barrer, donde: ¹⁸

$$1 Barrer = \frac{10^{-10} cm^3 (STP) cm}{cm^2 s cmHg}$$
(2.4)

El método más empleado para determinar el coeficiente difusivo de un gas a través de una membrana densa es el método integral o mejor conocido como método del time-lag, el cual fue sugerido por primera vez en 1920 por Daynes. ¹⁹

En los equipos diseñados para la evaluación de las propiedades de transporte de gases a través de membranas poliméricas, los experimentos se pueden correr de manera transitoria para determinar el time-lag θ , a partir del cual el coeficiente difusivo *D*, puede ser calculado empleando la solución asintótica de la segunda Ley de Fick: ²

$$D = \frac{l^2}{6\theta} \tag{2.5}$$

El coeficiente de solubilidad S, se determina a partir de la Ecuación 2.2: ¹²

$$S = \frac{P}{D}$$
(2.6)

La selectividad ideal α_{ij} , es una medida de la habilidad que tiene una membrana polimérica para separar un par de gases i, j y se define por la siguiente relación: ²⁰

$$\alpha_{ij} = \frac{P_i}{P_j} = \frac{S_i D_i}{S_j D_j}$$
(2.7)

2.3 Teoría del volumen libre

El volumen libre es una característica muy importante de los materiales poliméricos, pues puede influir en numerosas propiedades fisicoquímicas, mecánicas y de transporte de gases.²¹

El modelo del volumen libre se basa en la premisa que las tasas de transferencia de masa a través de una película polimérica son determinadas por la cantidad y distribución del espacio vacío disponible para el transporte molecular, dado que la molécula requiere un hueco transitorio adyacente para que lleve a cabo un salto difusivo,²² en el caso de los polímeros, las cavidades de volumen libre con dimensiones atómicas y moleculares se deben al empaquetado irregular de las cadenas poliméricas en el estado amorfo así como a las relajaciones moleculares de los grupos que conforman la estructura del polímero. Una expresión simple del volumen libre V_f , puede ser escrita como el volumen total o específico V_t , menos el volumen ocupado por las moléculas en ausencia de movimientos térmicos V_0 :²³

$$V_f = V_t - V_0 \tag{2.8}$$

Una aproximación para encontrar el volumen ocupado de los polímeros fue propuesta por Bondi, quien mostró que para la mayoría de las moléculas orgánicas el volumen a 0 K podía ser estimado a partir de la relación:²⁴

$$V_0 = 1.3 V_W$$
(2.9)

donde V_W es el volumen de van der Waals de la molécula, y el coeficiente 1.3 corresponde a la densidad de empaque de cristales moleculares a 0 K tomando en cuenta que aún a esta temperatura ciertos espacios vacíos son inevitables.²

2.4 Obstáculos para la separación de gases a través de membranas

La tecnología de separación de membranas ha encontrado algunas dificultades para su aplicación a gran escala. Uno de esos problemas es la naturaleza contraria entre permeabilidad y selectividad. El trabajo publicado por Robeson^{25, 26} analiza esta relación y propone un "upper bound", el cual es una correlación empírica basada en datos experimentales y que limita la capacidad de los polímeros para separar un par de gases.

Otros retos a los que se enfrenta esta tecnología son el envejecimiento físico de las membranas, ya sea natural o inducido, así como a la plastificación causada por gases condensables como el CO₂, H₂S y otros hidrocarburos pesados. A continuación, se describen con más detalle ambos problemas.

2.4.1 Envejecimiento físico

Por más de 20 años se ha sugerido que los polímeros vítreos con un balance notable entre movilidad y espacio intercadena pueden ofrecer membranas para la separación de gases con propiedades sobresalientes con respecto al típico "tradeoff" entre permeabilidad y selectividad. Pero uno de los principales obstáculos a los que se enfrentan los polímeros amorfos para ser comercializados es el fenómeno conocido como "envejecimiento físico" durante el cual y sin la intervención de
agentes químicos hay cambios progresivos en las propiedades mecánicas, ópticas y de trasporte de gases del polímero con respecto al tiempo.^{27, 28}

Debido a su naturaleza intrínseca, los polímeros vítreos pueden ser considerados como líquidos congelados por debajo de su temperatura de transición vítrea (T_g) cuyo volumen específico, entalpía y entropía son mayores que en su respectivo estado de equilibrio. El envejecimiento físico en polímeros vítreos ocurre en un rango amplio de temperaturas²⁹ (ver Figura 2.2) que va desde la T_g hasta la temperatura de transición de segundo orden más alta (T_β) e involucra una densificación reversible impulsada por una disipación del estado de no-equilibrio al estado de equilibrio termodinámico, lo que da como resultado una reducción en el tamaño y cantidad de las cavidades transitorias en la matriz del material, así como una pérdida en la flexibilidad de las cadenas poliméricas, en otras palabras, este fenómeno puede describirse apropiadamente en función del concepto de volumen libre y a pesar de que los cambios en densidad durante el envejecimiento físico son muy pequeños, sí pueden provocar reducciones muy significativas de los valores de permeabilidad en la membrana del polímero, afectando su productividad a nivel industrial.^{30, 31}

.

Figura 2.2. Envejecimiento físico en polímeros vítreos.

Por más de una década la comunidad científica ha observado que la velocidad de envejecimiento físico es más rápida en membranas delgadas que en membranas gruesas, pero también existen otros factores que afectan significativamente el comportamiento del envejecimiento físico en membranas poliméricas delgadas: (i) si la membrana está o no soportada en un sustrato; (ii) si la membrana ha sido tratada térmicamente por arriba o por debajo de su T_g; (iii) la temperatura a la cual son envejecidas las membranas; (iv) la velocidad de enfriamiento por debajo de la T_g; y (v) el modo de preparación de la muestra.³²⁻³⁵

En la Figura 2.3 se muestra el efecto en las propiedades de transporte de gases en una membrana de poliimida comercial estudiada por Ansaloni y colaboradores³⁰ debido al envejecimiento físico de la membrana con respecto al tiempo y con respecto a la temperatura de tratamiento térmico.

Figura 2.3. Efecto del tiempo (i) y temperatura de tratamiento térmico (ii) en el envejecimiento físico de una membrana de poliimida comercial.³⁰

Dicho estudio reveló que el tratamiento térmico de las membranas poliméricas puede afectar significativamente las propiedades de transporte de gases del material y que en particular al incrementar la temperatura de tratamiento la permeabilidad decrece apreciablemente. Así mismo, que el incremento de la temperatura de tratamiento aún por debajo de la T_g al igual que el envejecimiento

físico por efecto del tiempo, muestran una tendencia similar en el proceso de permeación para CO₂ y CH₄, sugiriendo de este modo, que ocurre el mismo tipo de redistribución estructural para el polímero vítreo en ambos casos.

Además de la determinación de las propiedades de transporte de gases para monitorear el envejecimiento físico en membranas poliméricas delgadas, éste fenómeno ha sido estudiado en diferentes materiales poliméricos empleando otras técnicas como: dilatometría, elipsometría, espectroscopía de aniquilación de positrones (PALS), resonancia de spin electrónico (ESR), dispersión de rayos x a bajos ángulos (SAXS), calorimetría diferencial de barrido (DSC), reflectometría y espectroscopía de fluorescencia.³⁶

Aunque el envejecimiento físico aún no se entiende por completo, se sugiere que ocurre vía una reorganización molecular y que es un efecto completamente morfológico que depende de la movilidad de las cadenas poliméricas en su intento por alcanzar el equilibrio, o bien, la conformación de menor energía.³⁷

2.4.2 Plastificación

Generalmente, la caracterización del desempeño de una membrana para la separación de gases se reporta en un rango de bajas a moderadas presiones con gases de interés como N₂, O₂, CH₄, He, H₂ y CO₂. A nivel laboratorio, es poco común que se realicen experimentos de permeación de gases a altas presiones, pero los resultados se pueden predecir con la información obtenida a bajas presiones. En el caso particular de gases condensables como los hidrocarburos y CO₂, la extrapolación para aplicaciones a altas presiones es muy incierta y la desviación experimental de las predicciones teóricas es atribuida al efecto conocido como plastificación.³⁸

La plastificación es otro de los fenómenos que tiene implicaciones significativas en la separación de gases a través de membranas, en particular durante el endulzamiento de gas natural una de las tecnologías de membrana que más rápidamente ha crecido. La mayoría de los polímeros vítreos muestran un mínimo en las permeabilidades como función de la presión parcial de CO₂. La Figura 2.4 ilustra este fenómeno, y puede observarse que la permeabilidad primero decrece al incrementar la presión de CO₂, pero llega un momento en el que ésta se incrementa a la vez que la presión continua aumentando. El incremento que se observa en la permeabilidad después de ese punto de flexión no puede ser descrito por el modelo dual de solución-difusión, sino que es resultado de una elevada concentración de CO₂ en la membrana del polímero que reduce la interacción entre los segmentos adyacentes de las cadenas poliméricas, como consecuencia se incrementa la movilidad de los segmentos de cadena y por lo tanto el volumen libre. Como resultado, un aumento en los valores de permeabilidad para CO₂ es comúnmente observado, sin embargo la selectividad con respecto a otros gases disminuye afectando el desempeño de la membrana.³⁹⁻⁴¹

Figura 2.4. Ejemplo de una isoterma de permeación de CO₂ como una función de la presión de alimentación del gas.

La presión donde se aprecia el mínimo de permeabilidad es llamada presión de plastificación, y se correlaciona con la cantidad mínima de CO₂ necesario para provocar la plastificación además de que es un indicador ideal para evaluar la robustez del polímero.⁴²

La temperatura, la presión, el espesor, la historia térmica, la composición y tipo del gas a separar son parámetros que pueden alterar el comportamiento de la plastificación de una membrana polimérica ⁴³ pero a diferencia del envejecimiento físico, ésta ha sido exitosamente mitigada en los polímeros vítreos mediante tres alternativas: (i) por medio de mezclas con polímeros menos plastificables; (ii) vía entrecruzamiento químico; y (iii) vía tratamiento térmico. Para el primer caso, el mezclado de polímeros es efectivo sólo cuando los polímeros seleccionados son miscibles entre sí. La modificación mediante entrecruzamiento químico, puede llevarse a cabo tanto a altas (150-300°C) como a relativamente bajas temperaturas (80°C). Finalmente mediante un tratamiento térmico adecuado, el fenómeno de plastificación se puede mitigar debido a la densificación de la matriz polimérica como resultado de la reducción de la movilidad de las cadenas.^{44, 45}

2.5 Referencias

- (1) Kim, S.; Lee, Y.M. Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO₂ separation. *J. Nanopart. Res.* **2012**, *14*, 949-959.
- (2) Paul, D. R.; Yampol´skii, Y. P. Polymeric gas separation membranes. *CRC Press.* **1994.**
- (3) Pandey, P.; Chauhan, R.S. Membranes for gas separation. *Prog. Polym. Sci.* **2001**, *26*, 853-893.
- (4) Aoki, T. Macromolecular design of permselective membranes. *Prog. Polym. Sci.* **1999**, *24*, 951-993.
- (5) Wang, L. K.; Chen, J. P.; Hung, Y. T. Membrane and desalination technologies. *Springer Science+Business Media*, New York. **2011**.
- (6) Huang, Y.; Paul, D. R. Physical aging of thin glassy polymer films monitored by gas permeability. *Polymer* **2004**, *45*, 8377-8393.
- (7) Cui, L.; Qiu, W.; Paul, D. R.; Koros, W. J. Physical aging of 6FDA-based polyimide membranes monitored by gas permeability. *Polymer* **2011**, *52*, 3374-3380.
- (8) Park, H.B.; Han, S.H.; Jung, C.H.; Lee, Y.M.; Hill, A.J. Thermally rearranged (TR) polymer membranes for CO₂ separation. *J. Membr. Sci.* **2010**, *359*, 11-24.
- (9) Winston-Ho, W. S.; Sirkar, K. K. Membrane handbook. *Springer Science+Business Media*, New York. **1992**.
- (10) Bruggen, B. V.; Jansen, J. C.; Figoli, A.; Geens, J.; Boussu, K.; Drioli, E. Characteristics and performance of a "universal" membrane suitable for gas separation, pervaporation, and nanofiltration applications. *J. Phys. Chem. B* 2006, *110*, 13799-13803.
- (11) Baker, R. W. Future directions of membrane gas separation technology. *Ind. Eng. Chem. Res.* **2002**, *41*, 1393-1411.

- (12) Ismail, A. F.; Kusworo, T. D.; Mustafa, A.; Hasbullah, H. Understanding the solution-diffusion mechanism in gas separation membrane for engineering students. *Development in Teaching and Learning*. **2005**, 155-159.
- (13) Wijmans, J.G. The role of permeant molar volume in the solution-diffusion model transport equations. *J. Membr. Sci.* **2004**, *237*, 39-50.
- (14) Wijmans, J.G.; Baker, R.W. The solution-diffusion model: a review. *J. Membr. Sci.* **1995**, *107*, 1-21.
- (15) Sanders, D. F.; Smith, Z. P.; Guo, R.; Robeson, L. M.; McGrath, J. E.; Paul, D. R.; Freeman, B. D. Energy-efficient polymeric gas separation membranes for a sustainable future: A review. *Polymer* **2013**, *54*, 4729-4761.
- (16) Geankoplis, C.J. Procesos de trasporte y operaciones unitarias. 3^a ed. Compañía Editorial Continental, S. A. de C. V. México, **1998**.
- (17) Bird, R. B.; Stewart, W. E.; Lightfoot, E. N. Fenómenos de trasporte. Editorial Reverté. México, 2001.
- (18) Matteucci, S.; Yampolskii, Y.; Freeman, B. D.; Pinnau, I. Transport of gases and vapors in glassy and rubbery polymers. In: Yampolskii, Y.; Pinnau, I.; Freeman, B. Materials Science of membranes for gas and vapor separation. Chichester: John Wiley & Sons; **2006**.1-47.
- (19) Taveira, P.; Mendes, A.; Costa, C. On the determination of diffusivity and sorption coefficients using different time-lag models. *J. Membr. Sci.* **2003**, *221*, 123-133.
- (20) García, C.; Tiemblo, P.; Lozano, A. E.; de Abajo, J.; de la Campa, J. G. Gas separation properties of new poly(aryl ether ketone)s with pendant groups. *J. Membr. Sci.* **2002**, *205*, 73-81.
- (21) Dlubek, G.; Fretwell, H. M.; Alam, M. A. Positron/Positronium annihilation as a probe for the chemical environment of free volume holes in polymers. *Macromolecules* **2000**, *33*, 187-192.
- (22) Zielinski, J. M. An alternative interpretation of polymer/solvent jump size units for free-volume diffusion models. *Macromolecules* **1996**, *29*, 6044-6047.

- (23) Jean, Y. C.; Mallon, P. E.; Schrader, D. M. Principles and applications of positron and positronium chemistry. World Scientific. 2003.
- (24) Yampolskii, Y.; Shantarovich, V. Positron annihilation lifetime spectroscopy and other methods for free volume evaluation in polymers. In: Yampolskii, Y.; Pinnau, I.; Freeman, B. Materials Science of membranes for gas and vapor separation. Chichester: John Wiley & Sons; 2006. p.191-210.
- (25) Robeson, L.M. Correlation of separation factor versus permeability for polymeric membrane. *J. Membr. Sci.* **1991**, *6*2, 165-185.
- (26) Robeson, L.M. The upper bound revisited. *J. Membr. Sci.* **2008**, *320*, 390-400.
- (27) Swaidan, R.; Ghanem, E.; Litwiller, E. Pinnau, I. Physical aging, plasticization and their effects on gas permeation in "rigid" polymers of intrinsic microporosity. *Macromolecules* **2015**, *48* (*18*), 6553-6561.
- (28) Kobayashi, Y.; Zheng, W.; Meyer, E. F.; McGervey, J. D.; Jamieson, A. M.; Simha, R. Free volume and physical aging of poly(vinyl acetate) studied by positron annihilation. *Macromolecules* **1989**, *22*, 2302-2306.
- (29) Struik, L. C. E. Physical aging in plastics and other glassy materials. *Polym. Eng.* & *Sci.* **1977**, *17*, 165-173.
- (30) Ansaloni, L.; Minelli, M.; Baschetti, M. G.; Sarti, G. C. Effects of thermal treatment and physical aging on the gas transport properties in matrimid[®]. *Oil Gas Sci. Technol.* **2015**, *70*, 367–379.
- (31) Priestley, R. D.; Broadbelt, L. J.; Torkelson, J. M. Physical aging of ultrathin polymer films above and below the bulk glass transition temperature: effects of attractive vs neutral polymer-substrate interactions measured by fluorescence. *Macromolecules* **2005**, *38*, 654-657.
- (32) Wang, H.; Chung, T.; Paul, D. R. Physical aging and plasticization of thick and films of the thermally rearranged ortho-functional polyimide 6FDA-HAB. *J. Membr. Sci.* **2014**, *458*, 27-35.
- (33) Gray, L. A. G.; Yoon, S. W.; Pahner, W. A.; Davidheiser, J. E.; Roth, C. B. Importance of quench conditions on the subsequent physical aging rate of glassy polymer films. Macromolecules **2012**, *45*, 1701-1709.

- (34) Huang, Y.; Wang, X.; Paul, D. R. Physical aging of thin glassy polymer films: Free volume interpretation. *J. Membr. Sci.* **2006**, *227*, 219-229.
- (35) Pye, J. E.; Roth, C. B. Above, below and in-between the two glass transitions of ultrathin free-standing polystyrene films: Thermal expansion coefficient and physical aging. *J. Polym. Sci., Part B. Polym Phys.* **2015**, *53*, 64-75.
- (36) Huang, Y.; Paul, D. R. Physical aging of thin glassy polymer films monitored by gas permeability. Polymer **2004**, *45*, 8377-8393.
- (37) Ho, C. H.; Vu-Khanh, T. Effects of time and temperature on physical aging of polycarbonate. *Theor. Appl. Fract. Mech.* **2003**, *39*,107-116.
- (38) Wessling, M.; Schoeman, S.; van der Boomgaard Th.; Smolders C. A. Plasticization of gas separation membranes. *Gas Separation and Purification*. **1991**, *5*, 222-228.
- (39) Dong, G.; Li, H.; Chen, V. Plasticization mechanisms and effects of thermal annealing of Matrimid hollow fiber membranes for CO₂ removal. *J. Membr. Sci.* **2011**, *369*, 206-220.
- (40) Bos, A. High pressure CO₂/CH₄ separation with glassy polymer membranes. Aspects of CO₂-induced plasticization. *PhD Dissertation* University of Twente, The Netherlands.**1991**.
- (41) Paul, D. R.; Yampol'skii, Y. P. Polymeric gas separation membranes. *CRC Press*.**1994**.
- (42) Zhou, J. Perfluorocyclobutyl polymerthin-film composite membrane fabrication, plasticization and physical aging *PhD Dissertation* Clemson University, **2013**.
- (43) Visser, T. Gas permeation properties of hyperbranched polyimide membranes. *PhD Dissertation* University of Twente, The Netherlands.**2006**.
- (44) Kapantaidakis, G. C.; Koops, G. H.; Wessling, M. CO₂ plasticization of polyethersulfone/polyimide gas-separation membranes. *AIChe Journal*. **2003**, *49* (7), 1702-1711.
- (45) Kusworo, T. D.; Ismail, A. F.; Mustafa, A. Studies of thermal annealing on suppression of plasticization of the asymmetric hollow fiber mixed matrix membranes. *World Appl. Sci. J.* **2013**, *28 (1)*, 9-19.

CAPÍTULO 3 DESARROLLO EXPERIMENTAL

3.1 Materiales y síntesis del polímero

3.1.1 Materiales

Todos los materiales iniciales fueron adquiridos en Aldrich Chemical. El di-tert-butil dicarbonato (BOC₂O) y la 4-dimetilaminopiridina fueron usados directamente y sin ninguna purificación previa. La N-metil-2-pirrolidona (NMP) fue destilada antes de usarse.

3.1.2 Síntesis del polímero

La Figura 3.1 muestra el esquema de la ruta de síntesis para obtener el polímero PN-BOC, ésta consiste de una modificación química que usa como material de partida al polímero PN-H, un polioxiindolbifenilileno sintetizado previamente ^{1, 2} y que se caracteriza por tener un hidrógeno como grupo lateral. El PN-H reacciona con el di-tert-butil dicarbonato, BOC₂O, para producir el polímero PN-BOC. La ruta anterior es una alternativa a la vía tradicional que implicaría la síntesis de un monómero de isatina con un grupo BOC para reaccionar posteriormente con un monómero de bifenileno.

Una reacción típica para modificar el polímero PN-H y obtener el polímero PN-BOC se describe a continuación: En un matraz Erlenmeyer equipado con una barra

magnética se adiciona el polímero PN-H (0.5 g, 1.76 mmol) y se disuelve en NMP (3mL). Posteriormente, se agrega el di-tert-butil dicarbonato (0.77g 3.532 mmol) y una solución previamente preparada de 4-dimetilaminopiridina (0.431g, 3.532 mmol) en NMP (2mL). La mezcla se deja reaccionar por 24 h a temperatura ambiente, una vez transcurrido el tiempo de reacción, la solución se deposita en metanol con la finalidad de precipitar el polímero. El precipitado como fibra blanca, se lava en metanol y acetona en un equipo Soxlet para remover completamente el NMP residual.

3.2 Formación de membranas y tratamientos térmicos

Membranas del polímero PN-BOC en forma de películas densas se prepararon mediante la técnica de disolución–evaporación, depositando soluciones al 3% en peso del polímero en cloroformo dentro de anillos de vidrio con fondo de celofán en una superficie horizontal (Figura 3.2). Las soluciones se dejaron evaporar a temperatura ambiente durante toda la noche. Una vez evaporado el solvente, las membranas fueron secadas en vacío a 80 °C por 24 h para eliminar cualquier traza de solvente residual. El rango de espesor de las membranas fue entre 40 y 50 µm.

Para producir membranas poliméricas químicamente modificadas en el estado sólido a partir del polímero puro PN-BOC, se eligió un protocolo de tratamiento térmico basado en los análisis termogravimétricos realizados en un TA Instruments Q50 operando con una rampa de calentamiento de 20 °C/min y con un flujo de nitrógeno de 60 mL/min. La modificación térmica a las muestras poliméricas en forma de membrana fue estudiada a 150 °C por 5, 10, 15, y 60 min en condiciones de vacío (~1 mmHg) usando una estufa Yamato ADP-21.

Para establecer un procedimiento térmico estándar, la estufa de vacío se precalentó por 1 h a 150 °C antes de que las membranas del polímero PN-BOC puro fueran introducidas dentro de la misma. Una vez concluido el respectivo tiempo de tratamiento térmico, las membranas fueron sacadas inmediatamente de la estufa y se dejaron enfriar a temperatura ambiente.

3.3 Caracterización de las membranas poliméricas

3.3.1 Resonancia magnética nuclear de protón

La estructura química del polímero PN-BOC fue asignada por resonancia magnética nuclear de protón ¹H NMR, empleando un equipo Bruker Avance Spectrometer operado a 400 MHz. La muestra se preparó disolviendo entre 60 y 70 mg de polímero en 1 mL de cloroformo deuterado (CDCl₃).

3.3.2 Espectroscopía de infrarrojo

La técnica de espectroscopía de infrarrojo por trasformada de Fourier con reflectancia total atenuada FTIR-ATR, fue empleada para seguir de manera cualitativa la cinética de reacción de los grupos termo-lábiles BOC, empleando un espectrómetro Nicolet FTIR-ATR iS10 Thermo Scientific en un rango de 600 a 3500 cm⁻¹ y a temperatura ambiente. Se obtuvieron los espectros IR normalizados para los polímeros PN-BOC, PN-H, así como para las membranas de los polímeros

tratados térmicamente usando el software OMNIC 8.0 con el fin de comparar cualitativamente el grado de conversión del polímero PN-BOC a los copolímeros [(PN-H)_x-(PN-BOC)_y]_n y eventualmente al polímero PN-H.

3.3.3 Calorimetría diferencial de barrido

Estudios de calorimetría diferencial de barrido DSC, fueron realizados para el polímero puro PN-BOC y para las membranas tratadas térmicamente de 25 a 400 °C usando un TA Instruments Q20 con una rampa de calentamiento de 10 °C/min con un flujo de nitrógeno de 50 mL/min. Una de las ventajas de esta técnica radica en su elevado grado de sensibilidad y a su rápida velocidad de procesamiento.³

3.3.4 Densidad

La densidad de las membranas tratadas térmicamente y del polímero PN-BOC puro, fue determinada a 30 °C en una columna de gradiente de densidad, misma que fue preparada empleando soluciones acuosas de ZnCl₂ bien desgasificadas. Para la determinación de esta propiedad física, una pequeña muestra de los polímeros con un centro de masa fácilmente identificable se introdujo dentro de la columna y se dejó equilibrar antes de realizar la lectura de su posición con respecto a la escala de la columna (ver Apéndice A).

3.3.5 Fracción de volumen libre

La fracción de volumen libre fue estimada empleando la siguiente expresión:⁴

$$FFV = \frac{V_t - V_0}{V_t} \tag{3.1}$$

donde el volumen total o específico V_t , es el inverso de la densidad del polímero (cm³/g) y V_0 es el volumen ocupado de las cadenas poliméricas (cm³/g) determinado por el método de Bondi.

Para los copolímeros [(PN-H)x-(PN-BOC)y]ⁿ el volumen ocupado fue estimado tomando en cuenta el grado de conversión del polímero PN-BOC al polímero PN-H mediante la siguiente relación: ⁵

$$V_0 = \emptyset V_{0,PN-H} + (1 - \emptyset) V_{0,PN-BOC}$$
(3.2)

donde $V_{0,PN-H}$ es el volumen ocupado del polímero PN-H, $V_{0,PN-BOC}$ es el volumen ocupado del polímero PN-BOC y Ø es la fracción de conversión másica del grupo BOC, calculada a partir de la pérdida de masa determinada por los análisis termogravimétricos dividida entre la pérdida de masa teórica calculada cuando se ha logrado un 100% de conversión del polímero PN-BOC al polímero PN-H.

Los cálculos para la estimación de la fracción de volumen libre del PN-BOC y de sus membranas tratadas térmicamente se discuten con más detalle en el Apéndice B.

3.3.6 Difracción de rayos X

El método de difracción de rayos X de ángulo amplio (WAXD), ha sido usado por décadas para determinar la estructura de las regiones cristalinas de los materiales poliméricos, pero también los patrones de difracción de los polímeros amorfos proporcionan información de gran utilidad, aunque éstos sean menos definidos y precisos que para las estructuras cristalinas.⁶

El desorden de largo alcance presente en los materiales amorfos da origen a difractogramas que están constituidos por una banda ancha que abarca un gran intervalo de ángulos θ y cuya intensidad (altura) máxima proporciona un aproximado de la distancia intersegmental entre dos cadenas poliméricas vecinas (d-spacing), la cual puede ser calculada a partir de la ecuación de Bragg: ⁷

$$n\lambda = 2dsen\theta \tag{3.3}$$

donde θ es el ángulo de máxima intensidad formado por el rayo incidente y el difractado; λ es la longitud de onda de la radiación utilizada y n es el orden de difracción.⁸

Para el polímero PN-BOC y sus respectivas membranas tratadas térmicamente, los estudios de difracción de rayos X (WAXD), se realizaron en un equipo Xeuss Xenocs con radiación CuK α , con una longitud de onda de 1.54 Å entre 2 y 30 grados 2 θ .

3.3.7 Evaluación de las propiedades de transporte de gases

Para la evaluación de las propiedades de transporte de gases se empleo una celda de permeación estándar⁹ (ver Apéndice C) que opera con el método presión variable- volumen constante (también conocido como método de time-lag a alto vacío¹⁰). Los coeficientes de permeabilidad para gases de ultra alta pureza y diámetros cinéticos diferentes tales como H₂ (0.289 nm), O₂ (0.346 nm), N₂ (0.364 nm), CH₄ (0.380 nm) y CO₂ (0.330 nm) fueron medidos en ese orden a 35 °C y 2 atm de presión.

Con el objetivo de estandarizar el protocolo de medición, todas las muestras de membrana fueron montadas en la celda inmediatamente después de concluido su tratamiento térmico y el sistema se dejó desgasificar por debajo de 10⁻³ Torr 24 h antes de iniciar las pruebas de permeación. La temperatura del sistema fue regulada usando un controlador Digi-Sense y la presión de alimentación del gas, así como la presión del gas permeado fueron medidas usando transductores de presión MKS, un Baratón tipo 722 A (escala de 15000 Torr) y un Baratón tipo 107 (escala de 1000 Torr) respectivamente.

El incremento de la presión del lado permeado versus el tiempo de experimentación, fue registrado empleando un controlador MKS 146 C quien se integra a una computadora mediante el software de Labia a través de un cable RS-232.

El cálculo de la pendiente lineal de la presión de permeado versus el tiempo $\frac{dp}{dt}$, proporciona la velocidad de permeación del gas penetrante en el estado estacionario¹¹ y su valor se emplea para determinar el coeficiente de permeabilidad para cada gas P_i , mediante la siguiente expresión:

$$P_i = K_{35\,^{\circ}\text{C}} \frac{Vl}{A p_0} \left(\frac{dp}{dt}\right) \tag{3.4}$$

donde P_i está en Barrer, V (cm³) corresponde al volumen de recepción para el gas permeado, l (μ m) es el espesor de la membrana, A es el área efectiva de la membrana (cm²) p_0 (Torr) es la presión del gas de alimentación y $K_{35 \, ^{\circ}\text{C}}$ es una constante a 35 °C cuyo valor es de 3.24 x10⁻¹⁰ (cm³(STP) h)/(cm² μ m s cmHg). Las mediciones de permeabilidad para cada gas puro fueron determinadas al menos tres veces teniendo errores experimentales menores al 4%.

Los valores de difusividad, D_i (cm²/s) y solubilidad, S_i (cm³ (STP)/cm³ atm) para cada gas, se calcularon empleando las Ecuaciones (2.5) y (2.6) respectivamente.

3.4 Referencias

- Hernandez, M. C. G.; Zolotukhin, M. G.; Formine, S.; Cedillo, G.; Morales, S. L.; et al. Novel, metal-free, superacid-catalyzed "Click" reactions of isatins with linear, nonactivated, multiring aromatic hydrocarbons. *Macromolecules* **2010**, *43*, 6968–6979.
- (2) Cruz, A. R.; Hernandez, M. C. G.; Guzmán-Gutiérrez, M. T.; Zolotukhin, M. G.; Fomine, S.; Morales, S. L.; Kricheldorf, H.; Wilks, E. S.; Cárdenas, J.; Salmon, M. Precision synthesis of narrow polydispersity ultrahigh molecular weight linear aromatic polymers by A2 + B2 nonstoichiometric step-selective polymerization. *Macromolecules* **2012**, *45*, 6774–6780.
- (3) Suriñach, S.; Baro, M. D.; Bordas, S.; Clavaguera, N.; Clavaguera-Mora, M.T. La calorimetría diferencial de barrido y su aplicación a la ciencia de materiales. *Bol. Soc. Esp. Ceram. Vidr.* **1992**, *31 (1)*, 11-17.
- (4) Paul, D. R.; Yampol'skii Y. P. Polymeric gas separation membranes. *CRC Press* **1994**.
- (5) Sanders, D. F.; Smith, Z. P.; Ribeiro, C. P., Jr.; Guo, R.; McGrath, J. E.; Paul, D. R.; Freeman, B. D. Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3'-dihydroxy- 4,4-diamino-biphenyl (HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). *J. Membr. Sci.* 2012, 409-410, 232-241.
- (6) Hellums, M. W.; Koros, W. J.; Husk, G. R.; Paul, D. R. Fluorinated polycarbonates for gas separation applications. *J. Membr. Sci.* **1989**, *46*, 93-112.
- (7) Bower, D. I. An introduction to polymer physics. Cambridge University Press, New York **2002**.
- (8) Recio, R.; Palacio, L.; Prádanos, P.; Hernández, A.; Lozano, A. E.; Marcos, A.; de la Campa, J. G.; de Abajo, J. Gas separation of 6FDA–6FpDA membranes effect of the solvent on polymer surfaces and permselectivity. *J. Membr. Sci.* 2007, 293, 22–28.
- (9) Camacho-Zuñiga, C.; Ruiz-Treviño, F. A.; Zolotukhin, M. G.; Del Castillo, L. F.; Guzman, J.; et al. Gas transport properties of new aromatic cardo poly(aryl ether ketone)s. *J. Membr. Sci.* **2006**, *283*,393–398.
- (10) Park, H. B.; Han, S. H.; Jung, C. H.; Lee, Y. M.; Hill, A. J. Thermally rearranged (TR) polymer membranes for CO2 separation. J. Membr. Sci. **2010**, *359*, 11–24.

(11) Jung, C. H.; Lee, J. E.; Han, S. H.; Park, H. B.; Lee, Y. M. Highly permeable and selective poly(benzoxazole-co-imide) membranes for gas separation. *J. Membr. Sci.* **2010**, *350*, 301–309.

CAPÍTULO 4 ANÁLISIS Y DISCUSIÓN DE RESULTADOS

4.1 Síntesis del polímero

El espectro ¹H NMR que confirma la estructura química del polímero puro PN-BOC se muestra en la Figura 4.1. El singulete observado en 1.67 ppm se asigna al protón del grupo ter-butil; los dobletes en 7.35 y 7.51 ppm corresponden a los protones del grupo bifenil, y las demás señales se asignan al resto de los protones que conforman la unidad repetitiva del polímero.

Figura 4.1. Espectro ¹H NMR para el polímero puro PN-BOC (solución en CDCI₃).

4.2 Caracterización termogravimétrica

La Figura 4.2 muestra los resultados de los análisis termogravimétricos TGA, para una membrana del polímero PN-BOC recién nacida por evaporación de solvente (curva 1), para una membrana de PN-BOC secada al vacío a 80 °C por 24 h (curva 2), y finalmente para una membrana PN-BOC tratada al vacío y secada primero a 80 °C por 24 h y posteriormente a 90 °C por 24 h adicionales (curva 3). La pérdida de peso teórica que corresponde a la descomposición total del grupo BOC por unidad polimérica repetitiva, un 26.1%, ha sido incluida como una línea de referencia.

De la Figura 4.2, es posible observar que la membrana recién nacida por evaporación del solvente, tiene una pérdida de masa del 27%, en un rango de temperatura entre 60 y 200 °C, ésta pérdida corresponde principalmente a la degradación térmica del grupo lateral BOC y a la eliminación del solvente residual (cloroformo). Después de secar en vacío a la membrana recién formada de PN-BOC a 80 °C por un periodo de 24h, se muestra que el tratamiento para eliminar el solvente residual deja una membrana que ahora revela un 25% de pérdida de masa, lo anterior, sugiere en primer instancia que la diferencia de aproximadamente un 2% con respecto a la membrana recién formada, se debe a la eliminación del cloroformo residual. Un secado adicional a 90 °C por otras 24 h y en condiciones de vacío, da como resultado una membrana que tiene un 22% de pérdida de masa, valor que es inferior a la pérdida de masa teórica esperada por la descomposición total del grupo BOC, pero aún más importante es el hecho de que está por debajo del 27% de pérdida de masa observada en la recién formada membrana de PN-BOC.

Figura 4.2. Análisis termogravimétricos, con una rampa de calentamiento de 10 °C/min en una atmósfera de nitrógeno para una membrana recién formada de PN-BOC por evaporación de solvente (curva 1), para una membrana de PN-BOC secada a 80 °C por 24 h en condiciones de vacío (curva 2), y para una membrana de PN-BOC secada primero a 80 °C por 24 h y posteriormente a 90°C por 24 h en condiciones de vacío (curva 3).

La relevancia de ésta última observación radica en el hecho de que éstos resultados cuantitativos sugieren que cierta cantidad de masa del grupo BOC se pierde inevitablemente durante los tratamientos de secado en vacío, especialmente cuando los periodos de tiempo empleados para eliminar el solvente residual son prolongados. Por ello, con el objetivo de estandarizar un procedimiento de tratamiento térmico para las membranas de PN-BOC y evitar una apreciable pérdida de masa por la descomposición del grupo BOC durante el proceso de secado, todas las membranas usadas para la medición de las propiedades de transporte de gases fueron secadas cuidadosamente a 80°C por 24 h en vacío y después, sometidas a un tratamiento térmico posterior tal y como se describe a continuación.

4.3 Cinéticas de reacción (descomposición térmica del grupo BOC versus tiempo)

Para establecer un protocolo apropiado de tratamiento térmico que permitiera seguir la reacción de descomposición del grupo BOC y estudiar el efecto del tratamiento térmico en los valores de permeabilidad y selectividad en una escala de tiempo adecuada, se llevaron a cabo análisis termogravimétricos a distintas temperaturas, la Figura 4.3 muestra las isotermas de la pérdida de peso a 130, 150, 170 y 200 °C como función del tiempo para membranas del polímero PN-BOC.

Una observación importante de esta figura es con respecto a la escala de tiempo de las cinéticas de reacción, las cuales son rápidas a altas temperaturas como 170 y 200 °C, y lentas a bajas temperaturas como es el caso de 130 °C; por ejemplo, a un tiempo constante de 10 o 15 min la cantidad total de BOC en la muestra prácticamente ha sido eliminada a altas temperaturas (>170 °C), mientras que a 130°C ha sido eliminado solamente de un 2 a un 5 % del peso de los grupos BOC.

Figura 4.3. Isotermas de descomposición del polímero PN-BOC determinadas por análisis termogravimétricos en una atmósfera de nitrógeno. Para alcanzar la temperatura objetivo y poder estandarizar el procedimiento, se empleo una rampa de calentamiento de 20 °C/min. La pérdida de peso teórica se incluye como referencia.

Desde un punto de vista práctico, estos resultados indican que el polímero PN-BOC será rápidamente transformado a PN-H a altas temperaturas (>170 °C) en periodos cortos de tiempo, mientras que periodos más largos de tiempo (>1 h) serán requeridos para convertir el PN-BOC a PN-H a bajas temperaturas (<130°C). De este modo, una temperatura de 150 °C es razonable para tratar térmicamente las membranas del polímero PN-BOC si un observador quiere aprender acerca del efecto del tratamiento térmico en las propiedades de transporte de gases en estas membranas. En efecto, a 150 °C, la cinética de reacción es aún lo suficientemente rápida para producir una modificación química del polímero PN-BOC a copolímeros [(PN-H)_x-(PN-BOC)_y]n en periodos relativamente cortos de tiempo (de 5 a 60 min).

El esquema general para llevar a cabo los análisis de TGA del polímero PN-BOC tratado isotérmicamente a 150 °C se muestra en la Figura 4.4, en dicho esquema se observa que primero la muestra se calienta de temperatura ambiente a 150 °C empleando una rampa de 20 °C/min en una atmósfera de nitrógeno y posteriormente la temperatura se mantiene constante a 150 °C por más de 60 min.

La descomposición isotérmica del grupo BOC a cualquier temperatura, puede ser seguida por la cantidad de la pérdida de peso determinada por los estudios de TGA de acuerdo con la siguiente expresión:

%Conversión =
$$\frac{W_T(t)}{W_{teórico}} X \ 100$$
 (4.1)

Donde $W_T(t)$ es la pérdida de masa del grupo BOC al tiempo t cuando el polímero PN-BOC es tratado térmicamente a la temperatura T, y $W_{teórico}$ es la pérdida de masa teórica por unidad repetitiva del polímero cuando todos los grupos termolábiles del grupo lateral han reaccionado.

La Tabla 1 resume el acrónimo del polímero y su conversión isotérmica a 150°C, cuando el PN-BOC se convierte primero a copolímeros [(PN-H)_x-(PN-BOC)_y]_n y posteriormente, a tiempo infinito, completamente en polímero PN-H de acuerdo al mecanismo mostrado en la Figura 1.4.

Figura 4.4. Esquema de los análisis de TGA para el polímero PN-BOC tratado isotérmicamente a 150 °C en una atmósfera de nitrógeno.

Tabla 4.1. Conversión isotérmica a 150 °C del polímero PN-BOC en copolímeros [(PN-H)_x- (PN-BOC)_y]_n y eventualmente a tiempo infinito al polímero PN-H.

Acrónimo del polímero	Tiempo, min	Conversión ^a , %		
PN-BOC	0	0		
PN-BOC₅	5	56		
PN-BOC ₁₀	10	79		
PN-BOC ₁₅	15	88		
PN-BOC ₆₀	60	96		
PN-H	00	100		

^a Porcentaje de conversión calculado a partir de la Ecuación (4.1).

De acuerdo con la Tabla 4.1, a los 5 min, se ha presentado una conversión del 56% del polímero PN-BOC en copolímeros [(PN-H)_x-(PN-BOC)_y]_n, mientras que a los 60 min la conversión de las unidades BOC a H ha sido del 96%. Durante la conversión térmica de los grupos BOC en el estado sólido, podría esperarse que las cadenas de estos copolímeros empaquen de manera diferente con respecto a la forma en que han empacado las cadenas de su polímero precursor el PN-BOC, y por supuesto, lo anterior debería verse reflejado en diferentes combinaciones de permeabilidad y selectividad con respecto a aquellas determinadas para las membranas de los polímeros puros PN-BOC y PN-H.

4.4 Caracterización de las membranas poliméricas

El progreso de la descomposición térmica del grupo BOC de las membranas del polímero PN-BOC tratadas térmicamente a 150 °C en el estado sólido y por diferentes tiempos, también es soportado por los espectros FTIR-ATR reportados en la Figura 4.5 y por los análisis DSC mostrados en la Figura 4.6.

En la Figura 4.5, el progreso de la reacción química puede seguirse de manera indirecta por la aparición eventual de la señal a 3400 cm⁻¹ y que corresponde al enlace N-H, así mismo por la presencia de un triplete entre 1700 y 1800 cm⁻¹ que corresponde a la señal de los dos grupos carbonil del polímero PN-BOC y que eventualmente desaparece conforme el tiempo de tratamiento térmico se incrementa de 5 a 60 min, hasta que se observa una sola señal que corresponde al grupo carbonil del polímero PN-H. Los espectros IR para las membranas de los polímeros puros PN-BOC y PN-H han sido incluidos con fines de comparación.

De manera similar, las pruebas de DSC reportadas en la Figura 4.6 revelan que una reacción química con diferentes grados de conversión del grupo BOC está ocurriendo, lo anterior se refleja en la reducción del área que corresponde a la reacción endotérmica de descomposición del grupo BOC entre 140 y 240 °C, hasta que prácticamente desaparece en el scan del polímero PN-BOC₆₀.

Figura 4.5. Espectros FTIR-ATR para el polímero puro PN-BOC y para los polímeros PN-BOC tratados térmicamente a 150 °C en diferentes tiempos. El espectro FTIR-ATR para el polímero puro PN-H es incluido como referencia.

Figura 4.6. Análisis DSC con una rampa de calentamiento de 10 °C/min desde temperatura ambiente hasta 400 °C y en una atmósfera de nitrógeno para el polímero puro PN-BOC y para los polímeros PN-BOC tratados térmicamente a 150 °C por diferentes tiempos.

Los resultados cualitativos de los análisis FTIR-ATR y DSC confirman que la reacción de descomposición del grupo BOC en membranas del polímero PN-BOC está siendo promovida por el protocolo de tratamiento térmico a 150 °C entre 5 y 60 min.

4.5 Propiedades de transporte de gases

Las propiedades de transporte de gases puros para el polímero precursor PN-BOC y sus respectivas membranas modificadas térmicamente, fueron evaluadas para aprender acerca del efecto del tratamiento térmico en los coeficientes de permeabilidad y el los factores de separación ideal. Estos datos, incluyendo además el volumen específico y la FFV, son mostrados en la Tabla 4.2, donde los valores que corresponden al polímero PN-H han sido incluidos con fines de comparación. Un aspecto considerable de mencionar es la relación entre los valores de permeabilidad y selectividad ideal para las membranas de los polímeros puros PN-BOC y PN-H y su fracción de volumen libre, ya que no siguen las típicas reglas establecidas.¹⁻⁴ Las membranas del polímero PN-BOC presentan coeficientes de permeabilidad y factores de selectividad ideal por debajo de los reportados para las membranas del polímero PN-H, a pesar de que la FFV del PN-BOC es mayor.

Al hacer una comparación estructural, resulta evidente que el grupo termolábil BOC es más voluminoso que un simple átomo de H, por ello, se esperaría que el coeficiente de permeabilidad de cierto gas para el polímero PN-BOC fuera mayor que su respectivo valor para el polímero PN-H. Sin embargo, éste no es el caso, y una posible explicación puede encontrarse en el hecho de que las membranas de estos dos polímeros fueron nacidas por la evaporación de solventes diferentes. Las membranas del PN-BOC fueron formadas en cloroformo, mientras que las membranas de PN-H fueron formadas en NMP.⁵ Los efectos del tipo de solvente asociados con las diferentes historias térmicas para eliminar el cloroformo (punto de ebullición 61.26 °C) comparado con el NPM (punto de ebullición 202 °C), pueden provocar densidades de empaque de las cadenas poliméricas con diferentes

53

redistribuciones de FFV⁶⁻⁹ para las membranas de los polímeros PN-BOC y PN-H, sin embargo no está dentro de las metas de este estudio determinar dicha redistribución.

Un parámetro adicional que pudiera explicar el hecho del porqué ambos polímeros no siguen la típica relación entre permeabilidad y FFV podría encontrarse en la movilidad de las cadenas poliméricas definida por su temperatura de transición vítrea T_g, sin embargo como lo muestra la Figura 4.6, estos polímeros no presentan una transición de segundo orden o T_g que sea apreciable antes de que alcancen su temperatura de descomposición a temperaturas tan altas como los 500 °C (ver Figura 4.2). Por esta razón no es posible concluir acerca del efecto de la movilidad de las cadenas del polímero como consecuencia de la presencia del grupo BOC o de sólo átomo de H en las propiedades de trasporte de gases de estos polímeros.

Debido a que los polímeros vítreos no están en equilibrio termodinámico, las condiciones durante y después de la formación de la membrana pueden influenciar la eficiencia del empaquetamiento de las cadenas. Esta afirmación, se soporta por el hecho de que cuando la membrana del polímero puro PN-BOC es tratada a 150 °C por 5 min para producir la membrana PN-BOC₅ hay un incremento en todos los coeficientes de permeabilidad, mismos incrementos que están acompañados por un lado, de una selectividad ideal prácticamente constante para los pares de gases O₂/N₂ y CO₂/CH₄ y un decremento en la selectividad ideal para los pares de gases H₂/CH₄ y CO₂/CH₄.

Si la FFV para la membrana PN-BOC₅ se calcula tomando en cuenta que a los 5 min 56 % del BOC ha sido transformado a un copolímero [(PN-H)_x-(PN-BOC)_y]_n, el valor es el mismo que para el polímero PN-BOC (0.169), aunque los coeficientes de permeabilidad se incrementan en un factor de 2.3 para O₂ y CO₂ y en un factor de 1.9 para H₂. De estos resultados, es evidente que una redistribución diferente para una misma magnitud de FFV está jugando un papel importante. Además, si se comparan los polímeros PN-BOC₅ y PN-H, sorpresivamente los coeficientes de permeabilidad del PN-BOC₅ están más cercanos a aquellos valores determinados para el PN-H, una membrana con una menor FFV que el PN-BOC₅ y el PN-BOC.

Los tratamientos térmicos con tiempos mayores de 5 min dan lugar a membranas con coeficientes de permeabilidad todavía más altos que el polímero PN-BOC pero inferiores a aquellos valores determinados para el PN-BOC₅. Con forme el tiempo de tratamiento térmico se incrementa de 5 a 60 min, los coeficientes de permeabilidad para el PN-BOC₁₀, PN-BOC₁₅ y PN-BOC₆₀ disminuyen cuando era de esperarse que éstos se incrementaran en la dirección de aquellos valores determinados para las membranas del polímero puro PN-H, pero de manera interesante, lo que realmente se está incrementando son las selectividades ideales de los pares de gases O₂/N₂, CO₂/N₂, H₂/CH₄ y CO₂/CH₄ en la dirección de la respectiva selectividad determinada para el PN-H puro. Las reducciones en los coeficientes de permeabilidad de 10 a 60 min están de acuerdo con la reducción en la FFV calculada a partir de la Ecuación 3.2, pero como fue mencionado anteriormente, dichos valores no están de acuerdo con lo que se hubiera esperado para los coeficientes de permeabilidad que, en principio deberían tender a los valores medidos para el PN-H puro.

Tabla 4.2. Coeficientes de permeabilidad y factores de separación ideal, medidos a 35 °C y 2 atm, así como el volumen específico y la fracción de volumen libre determinados para el polímero PN-BOC puro y para las membranas del polímero PN-BOC tratadas isotérmicamente a 150 °C por diferentes tiempos.

	Coeficiente de			Selectividad ideal,			Vt(30 °C), ^b		
Polímero	permeabilidad ^a , Pi				Pi / Pj			FFV ^c	
-	H ₂	O ₂	CO ₂	O ₂ /N ₂	CO ₂ /N ₂	H ₂ /CH ₄	CO ₂ /CH ₄	_ cm²/g	
PN-BOC	39	5.8	38	4.1	27	22	21	0.852	0.169
PN-BOC₅	73	13.2	86	4.1	27	15	18	0.848	0.169
PN-BOC ₁₀	63	10.0	62	4.5	28	20	19	0.840	0.163
PN-BOC ₁₅	65	9.1	56	4.6	28	27	23	0.834	0.157
PN-BOC ₆₀	67	8.7	54	5.1	32	32	26	0.825	0.148
PN-H ^d	99	14	101	4.8	35	31	32	0.821	0.145

a) Permeabilidad en Barrer (1 Barrer = 1 x10⁻¹⁰ cm³ gas STP cm /cm² s cmHg).

b) Vt(30 °C) es el volumen específico determinado a 30 °C en una columna de densidad variable.

c) FFV es la fracción de volumen libre calculada a partir de FFV = $[(V_t(30 \circ C) - V_0)/V_t(30 \circ C)]$ donde $V_0 = 1.3\Sigma V_w$, es el volumen ocupado y ΣV_w es el volumen de van der Waals de la unidad repetitiva calculado a partir del método de contribución de grupos descrito por Van Krevelen[10]. Para las membranas de PN-BOC tratadas isotérmicamente a 150 °C por diferentes tiempos, $V_0 = \emptyset V_{0,PN-H} + (1 - \emptyset)V_{0,PN-BOC}$ con \emptyset representando la fracción de conversión reportada en la tabla 4.1.

d) Permeabilidad y selectividad reportadas en ref. [11].

Ya que los cambios en la estructura química promovidos por los tratamientos térmicos en las membranas del polímero PN-BOC explican de manera parcial la tendencia de los coeficientes de permeabilidad, una explicación alternativa puede encontrarse en el fenómeno del envejecimiento físico o en la densificación acelerada de éstas membranas al ser sometidas a altas temperaturas por periodos largos de tiempo y que se ve reflejada en una disminución de los coeficientes de permeabilidad.¹²⁻²² Para el caso de las membranas del polímero PN-BOC tratadas térmicamente, éste fenómeno resulta más evidente en los coeficientes de permeabilidad del PN-BOC₆₀, una membrana con el 96% de conversión del grupo BOC a H, y cuyos coeficientes de permeabilidad son cerca de un 50% más bajos que para el PN-H aun cuando sus membrana poseen prácticamente la misma selectividad ideal.

La Figura 4.7 muestra la combinación de selectividad-permeabilidad para los pares de gases O₂/N₂ y CO₂/N₂, a 35 °C y 2 atm para las membranas de los polímeros puros PN-BOC y PN-H, así como para las membranas de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos. "Los upper bound" propuestos por Robeson son incluidos como referencia ^{23,24} debido a que representan el estado del arte en el desempeño de los polímeros como candidatos para los procesos de separación con membranas. Las combinaciones de selectividad-permeabilidad de las propiedades determinadas para una poliamida reticulable grafteada con β -ciclodextrina (PI-*g*-CD) asignada como un material para la captura o separación de CO₂ también se incluyen como referencia. ²⁵

La relación selectividad-permeabilidad para todas las membranas de PN-BOC tratadas térmicamente no siguen un comportamiento aditivo entre los polímeros puros PN-BOC y PN-H, una posible explicación a lo anterior podría ser por un lado, que como consecuencia del cambio químico hay una diferencia considerable en la eficiencia del empaque de las unidades repetitivas del polímero provocando a su vez diferentes redistribuciones del volumen libre, y por otro lado, es posible que la difusión del CO₂ e isobutileno, los productos de la degradación térmica de los grupos

BOC pudieran estar jugando un rol importante en la redistribución de los elementos del volumen libre.

También es interesante observar que la relación selectividad-permeabilidad presenta dos etapas bien definidas. En la primera, a los 5 min de tratamiento térmico, la relación selectividad-permeabilidad se desplaza hacia la derecha con respecto a la membrana de PN-BOC puro (de PN-BOC a PN-BOC₅). En la segunda etapa, de 10 a 60 min, las propiedades de permeabilidad-selectividad se trasladan hacia la izquierda y por arriba de las propiedades de la membrana PN-BOC₅ (de PN-BOC₁₀ a PN-BOC₆₀). Durante la primer etapa, para los pares de gases O_2/N_2 y CO_2/N_2 , hay un incremento en un factor de 2.3 en las permeabilidades de O_2 y CO_2 , sin una reducción en los valores respectivos de selectividad, mientras que en la segunda etapa hay una pérdida en los valores de permeabilidad en ambos gases con un respectivo incremento en la selectividad con respecto al N₂.

La segunda etapa confirma que el envejecimiento físico promovido por la exposición prolongada de los polímeros vítreos a altas temperaturas está presente durante los cambios químicos en el estado sólido de los polímeros estudiados en el presente trabajo; por ello, otra relación "trade-off" que necesita ser estudiada es la que se presenta entre el efecto de los cambios químicos y el envejecimiento físico sobre las propiedades físicas durante el desarrollo de nuevos materiales con grupos termolábiles para la separación de gases siguiendo el procedimiento planteado en la presente investigación.

Más allá del hecho de que el envejecimiento físico esté jugando un rol importante en las propiedades de transporte de gases, todas las membranas tratadas térmicamente a 150 °C desde 5 a 60 min, poseen mejores combinaciones de permeabilidad-selectividad al ubicarse a la derecha y por arriba de las respectivas combinaciones para el PN-BOC puro. Para muestra de lo anterior, las membranas PN-BOC₅ poseen valores de P(O₂) y P(CO₂) de 13.2 y 86 Barrer, y valores de selectividades ideales de 4.1 y 27 para O₂/N₂ y CO₂/N₂ respectivamente, valores de selectividad que a su vez también presenta la membrana del polímero precursor 58
PN-BOC. Los resultados de éste proceso donde las propiedades de transporte de gases también se mueven en la dirección de aquellas reportadas recientemente para la PI-*g*-CD, soportan la hipótesis general de que la degradación térmica de grupos laterales cuidadosamente diseñados en la unidad repetitiva del polímero pueden provocar una redistribución del volumen libre con mejores combinaciones de selectividad-permeabilidad que la de sus polímeros precursores.

La Figura 4.8 muestra la combinación permeabilidad-selectividad para los pares de gases H₂/CH₄ y CO₂/CH₄. Las propiedades para estos pares de gases también se mueven hacia la derecha con respecto a las respectivas combinaciones del polímero puro PN-BOC, pero sólo las de los polímeros PN-BOC₁₅ y PN-BOC₆₀ se desplazan a la derecha y por arriba de las del polímero PN-BOC.

Las dos etapas del proceso observadas para los pares de gases O₂/N₂ y CO₂/N₂, también se observan para los pares de gases H₂/CH₄ y CO₂/CH₄; sin embargo para este último caso, el típico "trade-off" entre permeabilidad y selectividad es muy notable en ambas etapas. Con respecto al polímero puro PN-BOC, la membrana del polímero PN-BOC₅ muestra un incremento en la permeabilidad de H₂ por un factor de 1.9, y un factor de 2.3 en el incremento de la permeabilidad del CO₂ con un consecuente decremento en la selectividad para el par de gases H₂/CH₄ y CO₂/CH₄. Después de tratar térmicamente a las membranas del polímero PN-BOC a 150 °C por más de 5 min se observa una caída en los valores de permeabilidad acompañado de un incremento en los valores de selectividad.

Figura 4.7. Relación selectividad-permeabilidad para los pares de gases O₂/N₂, de lado izquierdo y CO₂/N₂, de lado derecho, medidos a 35 °C y 2 atm, en membranas de PN-BOC y PN-H puros, así como en membranas de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos. Los números de los círculos blancos representan el tiempo de tratamiento térmico. Los cuadros sólidos corresponden a la PI-*g*-CD tratada térmicamente por 1 h a diferentes temperaturas. ²⁵

Figura 4.8. Relación selectividad-permeabilidad para los pares de gases H₂/CH₄, de lado izquierdo y CO₂/CH₄, de lado derecho, medidos a 35 °C y 2 atm, en membranas de PN-BOC y PN-H puros, así como en membranas de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos. Los números de los círculos blancos representan el tiempo de tratamiento térmico. Los cuadros sólidos corresponden a la PI-*g*-CD tratada térmicamente por 1 h a diferentes temperaturas. ²⁵

Desde un punto de vista práctico, las membranas de PN-BOC tratadas térmicamente a 150 °C por 15 y 60 min, tienen mejores combinaciones de propiedades que el polímero puro PN-BOC; por ejemplo, las membranas de PN-BOC₆₀ tienen coeficientes de permeabilidad de H₂ y CO₂ que son 1.7 y 1.4 veces mayores respectivamente que aquellos valores reportados para el PN-BOC puro y son más selectivas para el par de gases H₂/CH₄ y CO₂/CH₄. Una vez más, esto confirma que el diseño de grupos termolábiles como grupos laterales en la unidad polimérica puede dar origen a una familia de polímeros que superen la naturaleza contraria entre selectividad-permeabilidad, siempre y cuando el protocolo de tratamiento térmico sea el adecuado.

La permeabilidad de un gas puro, puede verse como el producto del factor difusivo y el factor de solubilidad, por ello, para un análisis más detallado de las propiedades de transporte de gases se requiere del conocimiento de estos factores. Las Tablas 4.3 y 4.4 reportan respectivamente los coeficientes difusivos y de solubilidad para las membranas del PN-BOC puro y las del PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos, así como la contribución al factor de separación ideal para los pares de gases O₂/N₂, CO₂/CH₄ y CO₂/N₂. La primera observación importante de estas tablas es el hecho de que para todos los gases hay un aumento en el valor de difusividad y solubilidad (con excepción del CH₄ que permanece casi constante) al comparar la membrana PN-BOC₅ con el polímero PN-BOC puro, lo anterior se traduce en un incremento de los coeficientes de permeabilidad. En el caso de los pares de gases O₂/N₂ y CO₂/N₂ la selectividad por difusión también aumenta, pero a su vez la selectividad por solución disminuye; está oposición es la responsable de que las membranas de PN-BOC y de PN-BOC₅ tengan el mismo factor de selectividad ideal para estos pares de gases (ver Figura 4.7). Por otro lado, para el par de gases CO₂/CH₄ se aprecia una cambio notable en el valor de la selectividad por difusión, de 6.63 para el PN-BOC disminuye a 3.97 para el PN-BOC₅, lo cual se refleja en una caída de selectividad en éste par de gases para el polímero PN-BOC5 con respecto al PN-BOC. Esta observación corresponde a la primera etapa de la relación selectividad-permeabilidad mostrada en la Figura 4.8.

En las Tablas 4.3 y 4.4 también se puede apreciar que mientras los factores de solubilidad para las membranas PN-BOC₅, PN-BOC₁₀ y PN-BOC₁₅ permanecen prácticamente sin cambios, los factores difusivos de las membranas PN-BOC₁₀ y PN-BOC₁₅ muestran una reducción con respecto a los valores reportados para el polímero PN-BOC₅. En el caso especial del CH₄, la molécula gaseosa con mayor diámetro cinético, la reducción en los factores de difusividad es más evidente, al caer por un factor de 1.97 del polímero PN-BOC₅ al polímero PN-BOC₁₅. Para el par de gases O₂ /N₂, se observa que entre los polímeros PN-BOC₅ y PN-BOC₁₅ la contribución de la selectividad por difusión al factor de separación ideal es más significativa que la selectividad por solubilidad, por su parte, para el par CH₄/CO₂ tanto la selectividad por difusión como la selectividad por solubilidad juegan un papel significativo en el valor del factor de separación ideal de estos gases.

Finalmente para el par de gases CO₂/N₂, no es tan evidente quien predomina en el valor permselectivo, sin embargo la combinación de ambas relaciones provoca que para los polímeros PN-BOC₅, PN-BOC₁₀ y PN-BOC₁₅ se observe el típico trade-off entre permeabilidad y selectividad.

De manera inesperada los valores de difusividad del polímero PN-BOC₆₀ disminuyen considerablemente con respecto al polímero PN-BOC₁₅, mientras que sus valores de solubilidad se incrementan, incluso casi el doble para el caso particular del CO₂ (de 12.545 a 24.367). Nuevamente se observa que el factor difusivo predomina en los valores de permeabilidad, sugiriendo una vez más, que durante la segunda etapa la relación entre selectividad-permeabilidad para las membranas PN-BOC₅, PN-BOC₁₀, PN-BOC₁₅ y PN-BOC₆₀ se ve influenciada por la densificación o envejecimiento físico de la matriz polimérica (ver Figuras 4.7 y 4.8).

Tabla 4.3. Coeficientes de difusión determinados a 35°C y 2 atm para las membranas del polímero puro PN-BOC y para las de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos, así como su contribución al factor de separación ideal para diferentes pares de gases.

Polímero	Difu	Difusividad, D _i (x10 ⁻⁸ cm ² /s)			Selec	Selectividad por difusión D _i /D _j		
	D(O ₂)	$D(N_2)$	D(CH ₄)	D(CO ₂)	O ₂ /N ₂	$\rm CO_2$ /CH ₄	CO_2/N_2	
PN-BOC	8.46	2.98	0.49	3.25	2.84	6.63	1.09	
PN-BOC₅	12.77	4.07	1.32	5.24	3.14	3.97	1.29	
PN-BOC ₁₀	9.21	2.86	0.86	3.41	3.22	3.97	1.19	
PN-BOC ₁₅	9.33	2.70	0.67	3.41	3.46	5.09	1.26	
PN-BOC ₆₀	6.70	1.13	0.34	1.67	5.93	4.94	1.49	

Tabla 4.4. Coeficientes de solubilidad determinados a 35°C y 2 atm para las membranas del polímero puro PN-BOC y para las de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos, así como su contribución al factor de separación ideal para diferentes pares de gases.

Polímero	Solubilidad, Si Polímero (cm ³ (STP))/(cm ³ atm)			n)	Selectividad por solubilidad Si/Sj			
	S(O ₂)	S(N ₂)	S(CH ₄)	S(CO ₂)		O_2 / N_2	$\rm CO_2$ /CH ₄	CO_2/N_2
PN-BOC	0.525	0.335	2.825	8.786	_	1.567	3.110	26.227
PN-BOC ₅	0.786	0.594	2.790	12.453		1.323	4.463	20.965
PN-BOC ₁₀	0.826	0.592	2.851	13.714		1.395	4.810	23.166
PN-BOC ₁₅	0.743	0.568	2.668	12.545		1.308	4.702	22.086
PN-BOC ₆₀	0.986	1.128	4.785	24.367		0.874	5.092	21.602

Una gran contribución para este trabajo sería el análisis de los factores difusivo y de solubilidad para el polímero PN-H, sin embargo, la literatura ¹¹ no reporta dichos valores y tampoco fue posible determinarlos, por lo que no es posible realizar un estudio más completo en esta parte.

4.6 Difracción de rayos X

Los patrones de difracción de rayos X (ver Apéndice D) para el polímero PN-BOC y las membranas de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos, muestran que estos polímeros son completamente amorfos. En la Tabla 4.5 se presentan los ángulos del pico máximo y los valores calculados de *d*-spacing mediante la ecuación de Bragg para el polímero puro PN-BOC y las membranas de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos. La FFV reportada anteriormente en la Tabla 4.2 se incluye nuevamente como referencia.

Tabla 4.5. Valores de 2 θ y *d*-spacing para los polímeros el polímero PN-BOC y las membranas de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos.

FV ^a
.169
169
163
.100
157
.107
1/10
. 140

a) FFV reportada en la Tabla 4.2

De la Tabla 4.5, se observa que el valor de *d*-spacing para esta serie de polímeros decrece cuando en polímero puro PN-BOC se somete a una relajación estructural acelerada por efecto de la temperatura a lo largo del tiempo, dando como resultado un incremento en la densidad de empaque de las cadenas poliméricas y 66

demostrando que los valores en la FFV correlacionan muy bien con el cálculo promedio de la distancia intercadenas.

Otra observación interesante de la Tabla 4.5 es el hecho de que los polímeros PN-BOC y PN-BOC₅ no sólo muestran la misma FFV, sino también comparten el mismo *d*-spacing, confirmando una vez más que las propiedades de trasporte de gases a través de las membranas PN-BOC y PN-BOC₅ dependen en gran medida de la forma en que se distribuye el mismo espacio disponible para la difusión de moléculas gaseosas.

4.7 Efecto de la temperatura en las propiedades de transporte de gases

Anteriormente se mencionó que la temperatura óptima para seguir la cinética de descomposición de los grupos BOC dentro de una escala de tiempo adecuada para el observador era de 150 °C, pues en periodos relativamente cortos de tiempo podía estudiarse el efecto del grado de conversión del grupo BOC en las propiedades de transporte de gases. Sin embargo, ante la interrogante del efecto de la temperatura en los valores de permeabilidad y selectividad durante los primeros minutos de tratamiento térmico, en el presente trabajo también se reportan los datos obtenidos para las membranas de PN-BOC tratadas a 170 °C por 2 min (PN-BOC₂¹⁷⁰) y a 200 °C por 1min (PN-BOC₁²⁰⁰)en condiciones de vacío.

La Figura 4.9 muestra la combinación de selectividad-permeabilidad para los pares de gases O₂/N₂ y CO₂/N₂, a 35 °C y 2 atm, para las membranas de los polímeros PN-BOC₅, PN-BOC₂¹⁷⁰ y PN-BOC₁²⁰⁰, así como su posición relativa con respecto a los "upper bound" propuestos por Robeson^{23, 24}. La hipótesis inicial suponía que a mayor temperatura mayor velocidad de difusión del CO₂ (producto de la descomposición del grupo BOC) a través de la matriz polimérica provocando un

incremento en la FFV y por lo tanto mayores valores de permeabilidad. Sin embargo, como se observa la Figura 4.9, el aumento de la temperatura del tratamiento térmico en las membranas de PN-BOC no ocasiona cambios muy considerables en las propiedades de permeación. Por ejemplo, para el par de gases O_2/N_2 , los polímeros PN-BOC₅, PN-BOC₂¹⁷⁰ y PN-BOC₁²⁰⁰ tienen el mismo valor de selectividad ideal de 4.2, mientas que la P(O₂) es de 13.2, 14.9 y 14.6 respectivamente. En el caso del par de gases CO_2/N_2 se aprecia que la permeabilidad de P(CO₂) se ve favorecida al aumentar de 86 a 95 para los polímeros PN-BOC₅ y PN-BOC₁²⁰⁰ respectivamente, mientras que la selectividad prácticamente permanece constante en 27.

En la Figura 4.10 se muestra la relación de selectividad-permeabilidad para los pares de gases H₂/CH₄ y CO₂/CH₄, a 35 °C y 2 atm, los valores de P(H₂) cambian de 73 para el PN-BOC₅ a 80, valor que comparten los polímeros PN-BOC₂¹⁷⁰ y PN-BOC²⁰⁰; con respecto a los valores de selectividad estos tienen una variación promedio del 3%. Un comportamiento similar presenta el par de gas CO₂/CH₄ donde la variación de los valores de selectividad es tan solo del 0.6%. De las observaciones anteriores se puede mencionar que si bien los cambios en las propiedades de permselectividad no son muy considerables entre 150, 170 y 200 °C como temperaturas de tratamiento térmico, si ponen en evidencia de que efectivamente la velocidad de difusión del CO₂ juega un papel importante en la redistribución de los elementos de volumen libre y por ello éste estudio representa un parteaguas para importantes contribuciones en trabajos futuros, como pueden ser: (1) tratar membranas del polímero PN-BOC a mayores temperaturas (250-400 °C) y por periodos muy cortos de tiempo (fracciones de minuto) con el objetivo de estudiar si la repentina difusión del CO₂ formado durante la descomposición del grupo BOC permite la formación de nanoporos no interconectados en la matriz polimérica y (2) incorporar más grupos BOC por unidad polimérica repetitiva y estudiar si la formación y posterior difusión de mayor cantidad de CO₂ es capaz de crear una estructura nanoporosa no interconectada más compleja.

Figura 4.9. Relación selectividad-permeabilidad para los pares de gases O_2/N_2 , de lado izquierdo y CO_2/N_2 , de lado derecho, medidos a 35 °C y 2 atm, en membranas de BOC₅, PN-BOC₂¹⁷⁰ y PN-BOC₁²⁰⁰.

Figura 4.10. Relación selectividad-permeabilidad para los pares de gases H_2/CH_4 , de lado izquierdo y CO_2/CH_4 , de lado derecho, medidos a 35 °C y 2 atm, en membranas de BOC₅, PN-BOC₂¹⁷⁰ y PN-BOC₁²⁰⁰.

4.8 Análisis ¹H NMR como técnica para determinar el grado de conversión del polímero.

La resonancia magnética nuclear es reconocida por ser una técnica con un amplio espectro de aplicaciones en el campo del análisis estructural, evaluación de la identidad y cuantificación de compuestos, además de la rapidez de procesamiento de la muestra y la gran certidumbre que ofrece,^{26, 27} por lo ello, puede ser empleada como una alternativa para determinar el grado de conversión del grupo BOC en cada uno de los copolímeros [(PN-H)_x-(PN-BOC)_y]_n resultado del tratamiento térmico del polímero PN-BOC a 150 °C por diferentes tiempos.

Para determinar el grado de conversión del grupo BOC a partir de los espectros de ¹H NMR, se tienen que integrar las señales que corresponden al protón del enlace N-H y que indica la presencia del polímero PN-H; así como la señal de los protones del grupo tert-butilo y que corresponden a la presencia del polímero PN-BOC. Las Figuras 4.11, 4.12, 4.13 y 4.14 muestran los espectros de ¹H NMR para los polímeros PN-BOC₅, PN-BOC₁₀, PN-BOC₁₅ y PN-BOC₆₀ respectivamente, como puede observarse, el área de la señal para el enlace N-H integra siempre para un solo protón; mientras que el área de los protones del enlace C-H del grupo tert-butilo integra para nueve unidades, por lo tanto, se debe tener presente que la conversión del grupo BOC en cada polímero debe estimarse de una relación 1:1 entre ambas áreas.

La Tabla 4.6 resume el valor de la integral de las señales para el protón del grupo amino (del polímero PN-H) y para los protones de los metilos (del polímero PN-BOC), así como el grado de conversión del grupo BOC.

	Integración para	Integración par			
	el enlace N-H	C-H del grupo	Conversión del		
Polímero	del polímero PN-	polímero PN-E	BOC, I _{PN-BOC}	arupo BOC ^a . %	
	H Jan u	Integral para 9	Integral para	5 1	
	P_{N-H}	protones	un protón		
PN-BOC₅	1.00	78.22	8.69	10	
PN-BOC ₁₀	1.00	21.89	2.43	29	
PN-BOC ₁₅	1.00	3.03	0.34	75	
PN-BOC ₆₀	1.00	0.41	0.046	96	

Tabla 4.6. Grado de conversión del grupo BOC por integración de las señales del espectro ¹H NMR para los copolímeros [(PN-H)_x-(PN-BOC)_y]_{n.}

^a Porcentaje de conversión determinado mediante la razón $\frac{I_{PN-H}}{I_{PN-H}+I_{PN-BOC (1 protón)}} X100.$

La Tabla 4.6 pone de manifiesto que para los polímeros PN-BOC₅, PN-BOC₁₀, PN-BOC₁₅, el % de conversión del grupo BOC calculado con ¹H NMR, no coincide con el calculado por TGA. La razón no se debe a que alguna de las dos técnicas se haya realizado de manera inadecuada, por el contario, la evidencia experimental demuestra que tanto los análisis de resonancia magnética como los de TGA son muy confiables. La diferencia en los resultados podría explicarse por el modo en que fueron tratadas las muestras; por un lado, las pruebas de TGA se llevaron a cabo de manera continua y en una atmósfera de N₂ (ver sección 4.3), mientras que las muestras para la ¹H NMR se trataron dentro de una estufa de vació Yamato ADP-21 de manera intermitente y de acuerdo con el protocolo establecido en la sección 3.2. Por ello, es recomendable para trabajos posteriores que con el objetivo de comparar ambas técnicas, las muestras a estudiar sean tratadas de la manera más similar posible no sólo térmicamente, sino también bajo el mismo tipo de atmósfera.

Figura 4.11. Espectro ¹H NMR para el polímero PN-BOC₅ (solución en Piridina-d₅).

Figura 4.12. Espectro ¹H NMR para el polímero PN-BOC₁₀ (solución en Piridina-d₅).

Figura 4.13. Espectro ¹H NMR para el polímero PN-BOC₁₅ (solución en Piridina-d₅).

Figura 4.14. Espectro ¹H NMR para el polímero PN-BOC₆₀ (solución en Piridina-d₅).

4.9 Referencias

- (1) Hellums, M. W.; Koros, W. J.; Husk, G. R.; Paul, D. R. Gas transport in halogen-containing aromatic polycarbonates. *J. Appl. Polym.* Sci. **1991**, *43*, 1977-1986.
- (2) Pixton, M. R.; Paul, D.R. Gas transport properties of polyarylates part I: connector and pendant group effects. *J. Membr. Sci.***1995**, *33*, 1135-1149.
- (3) McHattie, J.S.; Koros, W.J.; Paul, D. R. Gas transport properties of polysulphones: 3. Comparison of tetramethyl-substituted bisphenols. *Polymer* **1992**, 33, 1701-1711.
- (4) McCaig, M. S.; Seo, E. D.; Paul, D. R. Effects of bromine substitution on the physical and gas transport properties of five series of glassy polymers. *Polymer* **1999**, *40*, 3367-3382.
- (5) Colquhoun, H. M.; Zolotukhin, M. G. Superelectrophiles in aromatic polymer chemistry. *Macromolecules* **2001**, *34*, 1122-1124.
- (6) Shao, L.; Chung, T.; Wensley, G.; Goh, S. H.; Pramoda, K. P. Casting solvent effects on morphologies, gas transport properties of a novel 6FDA/PMDA-TMMDA copolyimide membrane and its derived carbon membranes. *J. Membr. Sci.* 2004, 244, 77-87.
- (7) Guan, R.; Dai, H.; Li, C.; Liu, J.; Xu, J. Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes. *J. Membr. Sci.* 2006, 277, 148-156.
- (8) Recio, R.; Palacio, L.; Prádanos, P.; Hernández, A.; Lozano, A. E.; Marcos, A.; de la Campa, J.G.; de Abajo, J. Gas separation of 6FDA-6FpDA membranes effect of the solvent on polymer surfaces and permselectivity. *J. Membr. Sci.* 2007, 293, 22-28.
- (9) Khulbe, K. C.; Matsuura, T.; Lamarche, G.; Kim, H. J. The morphology characterization and performance of dense PPO membranes for gas separation. *J. Membr. Sci.* **1997**, *135*, 211-223.
- (10)Van Kravelen, D.W. Properties of Polymers: Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier. Amsterdam, Netherlands, 1960.
- (11)Martínez-Mercado, E.; Ruiz-Treviño, F.A.; Cruz-Rosado, A.; Zolotukhin, M.G.; González-Montiel, A.; Cárdenas, J.; Gaviño-Ramírez, R.L. Tuning gas and selectivity properties by thermal modification of the side groups of

poly(oxindolebiphenylene)s membranes. *Ind. Eng. Chem. Res.* **2014**, *53*, 15755-15762.

- (12)Ansaloni, L.; Minelli, M.; Baschetti, M. C.; Sarti, G. C. Effects of thermal treatment and physical aging on the gas transport properties in matrimid[®]. *Oil & Gas Science and Technology-Rev. IFP Energies nouvelles* **2015**, 70, 367-379.
- (13)Huang, Y.; Paul, D. R. Effect of temperature on physical aging of thin glassy polymer films. *Macromolecules*, **2005**, 38 (24), 10148-10154.
- (14) Vaughn, J. T.; Koros, W. J.; Johnson, J. R.; Karvan, O. Effect of thermal annealing on a novel polyimide-imide polymer membrane for aggressive acid gas separations. *J. Membr. Sci.* **2012**, 401-402, 163-174.
- (15)Ho, C. H.; Vu-Khanh, T. Effects of time and temperature on physical aging of polycarbonate. *Theoretical and applied fracture mechanics* **2003**, 39,107-116.
- (16)Huang, Y.; Wang, X.; Paul, D. R. Physical aging of thin glassy polymer films: Free volume interpretation. *J. Membr. Sci.* **2006**, *227*, 219-229.
- (17)Cui, L.; Qiu, W.; Paul, D. R.; Koros, W. J. Physical aging of 6FDA-based polyimide membranes monitored by gas permeability. *Polymer* **2011**, *52*, 3374-3380.
- (18)Murphy, T. M.; Langhe, D. S.; Ponting, M.; Baer, E; Freeman, B. D.; Paul, D. R. Physical aging of layered glassy polymer films via gas permeability tracking. *Polymer* **2011**, *52*, 6117-6125.
- (19)Wang, H.; Chung, T.; Paul, D. R. Physical aging and plasticization of thick and films of the thermally rearranged ortho-functional polyimide 6FDA-HAB. *J. Membr. Sci.* **2014**, *458*, 27-35.
- (20)Swaidan, R.; Ghanem, B.; Litwiller, E.; Pinnau, I. Physical aging, plasticization and their effects on gas permeation in "rigid" polymers of intrinsic microporosity. *Macromolecules* **2015**, *48(18)*, 6553-6561.
- (21)Gray, L. A. G.; Yoon, S. W.; Pahner, W. A.; Davidheiser, J. E.; Roth, C. B. Importance of quench conditions on the subsequent physical aging rate of glassy polymer films. *Macromolecules* **2012**, *45*, 1701-1709.
- (22)Huang,Y.; Paul, D. R. Physical aging of thin glassy polymer films monitored by gas permeability. *Polymer* **2004**, *45*, 8377-8393.
- (23)Robeson, L.M. Correlation of separation factor versus permeability for polymeric membrane. *J. Membr. Sci.* **1991**, *6*2, 165-185.

- (24)Robeson, L.M. The upper bound revisited. *J. Membr. Sci.* **2008**, *320*, 390-400.
- (25) Xiao, Y.; Chung,T. S. Grafting thermally labile molecules on cross linkable polyimide to design membrane materials for natural gas purification and CO2 capture. *Energy Environ. Sci.* **2011**, *4*, 201-208.
- (26) Garrido, R.; Vélez, H.; Vérez, V. Resonancia magnética nuclear: nuevas aplicaciones en la cuantificación y la evaluación de intermediarios de vacunas basadas en polisacaridos. *Vaccimonitor* **2013**, *22 (1)*, 35-42.
- (27) Díaz, E. 40 años de resonancia magnética nuclear en México *Journal of the Mexican Chemical Society*, **2002**, *46* (*3*), 277-283.

CAPÍTULO 5 CONCLUSIONES

Un nuevo polionxiindolbifenilileno el PN-BOC, con una unidad BOC como grupo termolábil fue sintetizado y tratado térmicamente a diferentes temperaturas y tiempos, para aprender cómo la descomposición térmica del polímero precursor para producir copolímeros [(PN-H)_x-(PN-BOC)_y]_n, y eventualmente a tiempo infinito el polímero PN-H puede dar origen a membranas con mejores combinaciones de selectividad y permeabilidad que superen el típico trade-off.

A partir de las cinéticas de reacción llevadas a cabo a temperatura constante se determinó que un tratamiento térmico a 150 °C y por periodos cortos de tiempo (5-60 min) es adecuado para estudiar el efecto del grado de descomposición del grupo BOC en las propiedades de transporte de gases para las membranas de PN-BOC sujetas a dicho protocolo térmico.

El progreso cualitativo de la descomposición química del polímero PN-BOC al polímero PN-H se comprobó mediante análisis FTIR-ATR y DSC. Poniendo en evidencia que con un protocolo de tratamiento térmico apropiado es posible seguir la cinética de descomposición del grupo BOC.

Para las membranas de los polímeros PN-BOC, PN-BOC₅, PN-BOC₁₀, PN-BOC_{15 y} PN-BOC₆₀, los resultados de difracción de rayos X, revelaron que el cálculo de la distancia intermolecular entre dos cadenas poliméricas correlaciona adecuadamente con la FFV calculada a partir del método de contribución de grupos de Bondi y tomando en cuenta la fracción de conversión másica del grupo BOC.

En la relación selectividad-permeabilidad se distinguieron dos etapas para los pares de gases O₂/N₂ y CO₂/N₂. En la primera, que va del polímero PN-BOC al polímero PN-BOC₅ la permeabilidad del O₂ y CO₂ se desplaza hacia la derecha sin una reducción en los valores respectivos de selectividad. En la segunda etapa, de PN-BOC₁₀ a PN-BOC₆₀, las propiedades de permeabilidad-selectividad se trasladan hacia la izquierda y por arriba de las propiedades de la membrana PN-BOC₅, esta tendencia es resultado del envejecimiento físico acelerado de los polímeros por efecto de la temperatura a lo largo del tiempo.

Para los pares de gases H₂/CH₄ y CO₂/CH₄, la combinación de permeabilidadselectividad también presentó ambas etapas, pero en este caso, sólo las propiedades de los polímeros PN-BOC₁₅ y PN-BOC₆₀ se desplazaron hacia la derecha y por arriba de las propiedades del polímero PN-BOC.

De la discusión de las propiedades de transporte de gases, se concluye que el protocolo de tratamiento térmico de las membranas de PN-BOC en el estado sólido a 150 °C y distintos tiempos, permite de manera adecuada la formación de membranas más permeables y más selectivas que las membranas del polímero precursor PN-BOC.

Los polímeros PN-BOC, PN-BOC₅, PN-BOC₁₀, PN-BOC₁₅ y PN-BOC₆₀ no presentan una transición de segundo orden o T_g que sea apreciable antes de que alcancen su temperatura de descomposición y por esta razón no es posible concluir acerca del efecto de la movilidad de las cadenas del polímero como consecuencia de la presencia del grupo BOC o del átomo de H en las propiedades de trasporte de gases de estos polímeros.

Los análisis de los factores de difusividad y solubilidad para las membranas PN-BOC₅, PN-BOC₁₀, PN-BOC₁₅ y PN-BOC₆₀ justifican también que la relación entre selectividad y permeabilidad observada durante la segunda etapa se ve influenciada por el envejecimiento físico o densificación acelerada de la matriz polimérica por efecto del tratamiento térmico, ya que es el factor difusivo el que predomina en los valores de permeabilidad de dichas membranas durante esta etapa.

El estudio del efecto de la temperatura en los valores de permeabilidad y selectividad durante los primeros minutos de tratamiento térmico reveló que la velocidad de difusión del CO₂ formado durante la descomposición del grupo BOC, es una variable importante en la redistribución de los elementos de volumen libre, abriendo las puertas a nuevos diseños experimentales que involucren tratar a las membranas del polímero PN-BOC a temperaturas

mayores a los 250 °C y por fracciones de minuto, o bien, incorporar más grupos BOC por unidad polimérica repetitiva.

Se sugirió el uso de la técnica de ¹H RMN para soportar cuantitativamente el grado de conversión del grupo BOC, pero los resultados obtenidos no correlacionan apropiadamente con aquellos obtenidos por TGA. La razón podría encontrarse en la forma en la que fueron tratadas las muestras durante las pruebas, pues mientras los experimentos de TGA se llevaron a cabo de manera continua y en una atmósfera de N₂, las muestras para la ¹H NMR se trataron dentro de una estufa de vació de manera intermitente.

5.1 Recomendaciones finales

Los polímeros térmicamente modificados (TR) son una familia de polímeros con altas permeabilidades de CO₂, atractiva selectividad CO₂/CH₄ y una excelente resistencia a la plastificación. Sin embargo, para poder ser sintetizados, su polímero precursor debe someterse a temperaturas superiores a los 300 °C, lo cual implica un consumo energético importante desde el punto de vista comercial. Los polímeros con un grupo lateral susceptible a ser modificado térmicamente en el estado sólido pueden representar una alternativa viable para reducir los costos de energía durante la modificación química de una unidad polimérica, tal y como fue demostrado en el presente trabajo, donde con temperaturas inferiores a los 200 °C fue posible descomponer el polímero PN-BOC a PN-H. Pero para poder lograr el desempeño mostrado por los polímeros TR resulta fundamental ampliar el estado del arte de este nuevo grupo de polímeros, diseñando nuevas estructuras químicas para el polímero precursor y estudiando al mismo tiempo el protocolo óptimo de tratamiento térmico al que pueden ser sometidas.

Con base en la experiencia adquirida durante el desarrollo de esta investigación algunas recomendaciones para trabajos futuros podrían enfocarse por un lado en la cantidad de grupos BOC por unidad repetitiva del polímero, puesto que éste grupo tiene la ventaja de descomponerse a temperaturas relativamente moderadas (90-200 °C) y formar CO₂, un gas capaz de modificar la estrutura física de la matriz polimérica por su naturaleza porógena y de este modo evaluar la posibilidad de crear una estructura nanoporosa no interconectada más compleja. Y por otro lado, tratar las membranas del polímero PN-BOC a temperaturas superiores a los 250 °C, pero sólo por fracciones de minuto con el objetivo de estudiar si la repentina difusión del CO₂ permite la formación de nanoporos no interconectados en la matriz del polímero, sin embargo, es importante mencionar que la principal desventaja de esta alternativa es el hecho de que por la escala de tiempo del experimento no sería posible seguir a detalle el efecto del grado de descomposición del polímero precursor en las propiedades de transporte de gases, además de que tendría que ser necesario encontrar, o bien desarrollar un equipo que permita tratar térmicamente las muestras de manera adecuada, puesto que los tiempos de tratamiento serían muy cortos.

Ante este panorama, el presente trabajo pretende ser una guía en el estudio y caracterización de esta nueva clase de polímeros y evaluar sus ventajas y desventajas al emplearlos como membranas para la separación de gases.

APÉNDICES

Apéndice A Columna de densidad variable

A.1. Generalidades

La densidad de un polímero es una propiedad utilizada frecuentemente como un medio para detectar variaciones en su estructura física o composición, también puede ser utilizada como un indicador de la uniformidad entre muestras y dependerá del método de preparación del espécimen.¹

El método de la columna de densidad variable es uno de los métodos más precisos para determinar la densidad de un polímero², por ello, a pesar de que su acondicionamiento requiere de un proceso largo y cuidadoso sigue siendo una de las técnicas más empleadas en el estudio de los materiales poliméricos. De modo general, éste método se basa en la observación de la posición que alcanza el espécimen de ensayo, comparada con la posición de patrones de densidad conocida, sumergidos dentro de una columna graduada llena con un líquido cuya densidad se incrementa de manera lineal de la parte superior hasta el fondo de la columna.³

A.2. Preparación de la muestra

Las muestras poliméricas se cortaron con formas convenientes para facilitar su identificación, pero deben tener dimensiones que permitan la medida más exacta de su centro de masa, así mismo, se debe procurar que la superficie de la muestra esté lisa y libre de cavidades que puedan atrapar burbujas de aire durante la inmersión del espécimen en el líquido de la columna.

A.3. Preparación de la columna

Se prepararon dos soluciones de cloruro de zinc (ZnCl₂) con agua destilada dentro del rango de densidad deseado. En este caso se emplearon 1100 ml de una

solución con una densidad promedio de 1.065 g/cm³ (solución diluida) y 900 ml de una solución con una densidad promedio de 1.306 g/cm³ (solución concentrada).

Es importante filtrar y desgasificar las soluciones para el llenado de la columna con la finalidad de evitar cualquier interferencia con la determinación de la densidad de las muestras.

Se montó el material de vidrio y conexiones del equipo, y se dispuso de las soluciones diluida y concentrada como se muestra en la Figura A.1.

Figura A.1. Esquema de la columna de densidad variable.

Es importante verificar que las válvulas V1 y V2 estén cerradas antes de verter las soluciones de ZnCl₂, porque de lo contario la columna ya no será útil.

Una vez montado el equipo, se encendió el controlador de temperatura y se ajustó a 30°C, se puso en marcha el agitador magnético y se abrió la válvula V1 para permitir que ambas soluciones alcanzaran un equilibrio hidrostático mismo que tomó alrededor de 25 min. Transcurrido este tiempo la válvula V2 se abrió para permitir el paso de la solución hacia el capilar hasta que la columna se llenó a su máxima capacidad para lo cual transcurrieron 3.5 h. Al llenarse la columna, se cerraron ambas válvulas, se desconectó el agitador magnético y se extrajo cuidadosamente el tubo capilar de la columna. Posteriormente siete estándares cuya densidad es perfectamente conocida y que se muestran en la Tabla A.1 se introdujeron con mucho cuidado dentro de la columna de densidad variable iniciando por el de mayor densidad. Para evitar cualquier contaminación de la columna, los estándares deben estar perfectamente limpios, además de que es necesario dejar estabilizar el sistema por 24 h para que llegue a la temperatura requerida de 30 °C y que los estándares tengan una posición estable antes de llevar a cabo cualquier medición.

Estándar	Densidad,
	g/cm ³
1	1.1100
2	1.1397
3	1.1695
4	1.1996
5	1.2253
6	1.2500
7	1.2750

Tabla A.1. Estándar	es empleados para	a la calibración	la columna de	densidad variable.
---------------------	-------------------	------------------	---------------	--------------------

Transcurrido el tiempo de equilibrio, se registró la ubicación de cada estándar con respecto a la escala de la columna y se determinó la ecuación lineal que correlaciona la densidad con la posición de los estándares (Ver Figura A.2).

Figura A.2. Relación densidad-posición de los estándares empleados para calibrar la columna de densidad variable.

Después de realizada la calibración del sistema, las muestras de las membranas poliméricas se introdujeron una a la vez dentro de la columna de densidad variable con ayuda de unas pinzas, y antes de determinar la primera lectura de su posición, se dejaron estabilizar por un periodo de 4h. La densidad de las muestras a estudiar (ρ) se determinó a partir de la relación y=-0.0056x +1.4437, y se reporta en la Tabla A.2. Finalmente, las lecturas de la posición de las muestras se realizaron por el transcurso de 5 días consecutivos con la finalidad de verificar los datos obtenidos.

Polímero	Altura, cm	ho, g/cm ³
PN-BOC	48.25	1.1735
PN-BOC₅	47.3	1.1788
PN-BOC ₁₀	45.3	1.1900
PN-BOC ₁₅	43.7	1.1990
PN-BOC ₆₀	41.3	1.2124

Tabla A.2. Densidad del polímero PN-BOC y de las membranas de PN-BOC tratadas térmicamente a 150 °C por diferentes tiempos.

A.3. Referencias

- (1) Proyecto de norma mexicana PROY-NMX-E-166-CNCP-2013.
- (2) Sanders, D.F.; Smith, Z.P.; Ribeiro, C.P., Jr.; Goo, R.; McGrath, J.E.; Paul, D.R.; Freeman, B.D. Gas permeability, diffusivity, and free volume of thermally rearranged polymers based on 3,3'-dihydroxy-4,4'-diamino-biphenyl (HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropane dianhydride (6FDA). *J. Membr. Sci.* **2012**, 409-410, 232-241.
- (3) Brower, D. I. An introduction to polymer physics, Cambride, **2002**.

Apéndice B

Fracción de volumen libre

B.1. Volumen ocupado de los polímeros puros PN-H y PN-BOC

El volumen ocupado V_0 , de los polímeros puros PN-H y PN-BOC, cuyas estructuras se muestran en la Figura B.1, se estimó a partir del método de contribución de grupos de Bondi.

Figura B.1. (a) unidad repetitiva del polímero PN-H y (b) unidad repetitiva del polímero PN-BOC.

El volumen de van der Waals de los grupos funcionales que conforman la estructura del polímero PN-H se obtuvieron de la literatura¹ y se reportan en la Tabla B.1. De manera similar, la Tabla B.2 muestra el volumen de van der Waals de los grupos funcionales que conforman la estructura del polímero PN-BOC.

Los pesos moleculares M_w , de la unidad repetitiva de los polímeros PN-H y PN-BOC, así como su respectivo V_0 en cm³/mol y en cm³/g se reportan en la Tabla B.3.

Grupo funcional	Número de grupos funcionales por unidad polimérica repetitiva	V _w , cm³/m ol
	2	86.64
	1	43.32
c	1	3.33
C==0	1	11.7
N-H	1	8.08

Tabla B.1. Volumen de van der Waals de los grupos funcionales que conforman laestructura del polímero PN-H.

Tabla B.2. Volumen de van der Waals de los grupos funcionales que conforman laestructura del polímero PN-BOC.

Grupo funcional	Número de grupos funcionales por unidad polimérica repetitiva	V _w , cm ³ /m ol	Grupo funciona I	Número de grupos funcionales por unidad polimérica repetitiva	V _w , cm ³ /m ol
	2	86.64		1	4.33
	1	43.32	—o	- 1	15 0
c	2	6.66	II O	Ţ	13.2
c==0	1	11.7	—СНЗ	3	41.01

Polímero	M_w ,	$V_0 = 1.3 \sum V_w,$	$V_0 = 1.3 \sum V_w,$
	g/mol	cm³/mol	cm³/g
PN-BOC	383.439	271.518	0.7081
PN-H	283.323	198.991	0.7024

Tabla B.3. Peso molecular y volumen ocupado de los polímero PN-BOC y PN-H.

B.2. Volumen ocupado de las membranas del polímero PN-BOC tratadas a 150 °C por distintos tiempos

El volumen ocupado de los copolímeros [(PN-H)x-(PN-BOC)y]n fue estimado a partir de la Ecuación 3.2, $V_0 = \emptyset V_{0,PN-H} + (1 - \emptyset)V_{0,PN-BOC}$, donde \emptyset es la fracción de conversión másica del grupo BOC (fracción de PN-H). La Tabla B.4 muestra la información necesaria para el cálculo del volumen ocupado de las membranas de PN-BOC tratadas a 150 °C por distintos tiempos.

Tabla B.4. Volumen ocupado para los polímeros puros PN-BOC y PN-H y para loscopolímeros [(PN-H)x-(PN-BOC)y]n.

Polímero	Fracción de PN-H, Ø	Fracción de PN-BOC, 1 – Ø	V ₀ , cm³/g
PN-BOC	0	1	0.7081
PN-BOC₅	0.56	0.44	0.7049
PN-BOC ₁₀	0.79	0.21	0.7036
PN-BOC ₁₅	0.88	0.12	0.7030
PN-BOC ₆₀	0.96	0.04	0.7026
PN-H	1	0	0.7024

B.3. Fracción de volumen libre de los polímeros puros PN-BOC y PN-H y de las membranas de PN-BOC tratadas a 150°C por distintos tiempos

La fracción de volumen libre FFV, de los polímeros estudiados en el presente trabajo se estimó empleando la Ecuación 3.1 y los resultados se presentan en la Tabla B.5.

Tabla B.5. Fracción de volumen libre para los polímeros puros PN-BOC y PN-H y para los copolímeros [(PN-H)_x-(PN-BOC)_y]_n.

Polímero	$V_t = 1/ ho$ cm ³ /g	V ₀ , cm³/g	$FFV = \frac{V_t - V_0}{V_t}$
PN-BOC	0.852	0.7081	0.169
PN-BOC ₅	0.848	0.7049	0.169
PN-BOC ₁₀	0.840	0.7036	0.163
PN-BOC ₁₅	0.834	0.7030	0.157
PN-BOC ₆₀	0.825	0.7026	0.148
PN-H	0.821 ^a	0.7024	0.145

a) V_t reportado en ref. [2].

B.4. Referencias

- (1) Van Kravelen, D.W. Properties of Polymers: Their Correlation with Chemical Structure, Their Numerical Estimation and Prediction from Additive Group Contributions; Elsevier. Amsterdam, Netherlands, **1960**.
- (2) Martínez-Mercado, E.; Ruiz-Treviño, F.A.; Cruz-Rosado, A.; Zolotukhin, M.G.; González-Montiel, A.; Cárdenas, J.; Gaviño-Ramírez, R.L. Tuning gas and selectivity properties by thermal modification of the side groups of poly(oxindolebiphenylene)s membranes. *Ind. Eng. Chem. Res.* **2014**, 53, 15755-15762.
Apéndice C

Equipo de permeación de gases

Figura C.1. Diagrama del equipo de permeación de gases.

Apéndice D Espectros de difracción de rayos X

Figura D.1. Espectro de difracción de rayos X con radiación CuKα y una longitud de onda de 1.54 Å para el polímero PN-BOC.

Figura D.2. Espectro de difracción de rayos X con radiación CuK α y una longitud de onda de 1.54 Å para el polímero PN-BOC₅.

Figura D.3. Espectro de difracción de rayos X con radiación CuK α y una longitud de onda de 1.54 Å para el polímero PN-BOC₁₀.

Figura D.4. Espectro de difracción de rayos X con radiación CuK α y una longitud de onda de 1.54 Å para el polímero PN-BOC₁₅.

Figura D.5. Espectro de difracción de rayos X con radiación CuK α y una longitud de onda de 1.54 Å para el polímero PN-BOC₆₀.

Apéndice E

Hojas de cálculo para las propiedades de permeación de gases

Fecha	Gas	Pol	ímero									
20-nov-14	H2	PN-BOC										
						0.3						
diametro,cm	area,cm ⁻	espesor,µm	volumen,cm ⁻		0	25				1		
1.24	1.20958	42.0	34.8		ີຍີ							
					E '	0.2						
TIPCI		-	35 + 0 5		. ≣ 0	.15				45 600 0 000	. – –	
Platml		-	35 2 0.5		5.0	0.1	/		y -	= 15.688x - 0.006t	· –	
i [atin]			2.1		5					R ⁺ = 0.9998		
					0	.05						
						0						
		Pre	esión			0	0.01 0	.02 Tiem	0.04	0.05 0.06		
Tiempo	Tiempo	Superior	Inferior					nem	50 (II)			
ms	horas	Torr	Torr				dp/dt		P ₂ promedio	Permeabilidad		
0	0	1761	0.001			Experime	nt Fuga	GAS	Torr	Barrers		
177	4.9E-05	1761	0.001		1	15.70	8 0.017849	15.690	1560.9	39.3467		
325	9E-05	1698	0		2	15.71	7	15.699	1559.9	39.3964		
395	0.00011	1517	0		3	15.71	3	15.696	1561.1	39.3568		
480	0.00014	1524	0.001	PR					1500.0	39.3000		
584	0.00016	1524	0.001									
/01	0.00019	1532	0			Time Lag	0.000421	l hs				
/84	0.00022	1534	0.001				0.025242	2 min		1 ^v convensiol		2 ^e convoncial
000	0.00023	1538	0				1.514533	seg		1 secuencial		2 secuencial
1094	0.00027	1541	0			4	0.001683	s hs	40	0.02	40	0.037
1240	0.00034	1545	- č			8	0.003366	o ns	80	0.02168281	80	0.038682815
1315	0.00037	1546	0.001			4	0.001083	ns	40	0.00108281	40	0.001082815
1401	0.00039	1548	0.002									
1486	0.00041	1550	0.001									
1584	0.00044	1549	0.001									
1685	0.00047	1551	0.002	Dit	usivida	d						
1784	0.0005	1553	0.003	1.9	41E-06	cm ² /s						
1885	0.00052	1551	0.002									
1985	0.00055	1554	0.003	Sol	ubilida	d						
2100	0.00058	1554	0.003	0	.15413	cm ³ (STP	/ cm ³ atm					
2249	0.00062	1553	0.004			-						
2325	0.00065	1556	0.004									
2395	0.00067	1555	0.004									
2484	0.00069	1555	0.004									
2586	0.00072	1556	0.005									
2686	0.00075	1557	0.006									
2799	0.00078	1557	0.006									
2885	0.0008	1558	0.006									
2985	0.00083	1557	0.007									
2094	0.00096	1557	0.007									
2004	0.00030	1557	0.007									
3220	0.0009	1228	0.007									
3293	0.00091	1558	0.008									
3385	0.00094	1559	0.008									

Figura E.1. Hoja de cálculo para H₂ en membrana de PN-BOC.

Fecha	Gas	Polím	iero							_	
19-nov-14	02	PN-BOC									
									0004		
				0.12	1			$\gamma = 2.3191x - 0.000$	10224		
diametro,cm	area,cm ⁻	espesor,µm	volumen,cm					R" = 0.999	· /		
1.24	1.20958	42.0	34.8	0.1				8			
				- E 0.08				1		_	
TI°CI		=	35±0.5	Ĕ							
P [atm]		=	2.1	10.06		۲ I					
				ũ 0.04		÷					
				0.02				V			
T :	T :	Presi	ion	0							
Tiempo	Tiempo	Superior	Torr	()	0.05		0.1	0.15		
0	0	1755	0				Tiempo (h)			_	
201	5.58F-05	1749	0.001								
500	0.000139	1664	0							_	
806	0.000224	1520	0								
1106	0.000307	1522	0			dp/dt		P ₂ promedio	Permeabilidad		
1400	0.000389	1527	0		Experimental	Fuga	GAS	Torr	Barrers		
1700	0.000472	1529	0	1	2.333	0.01785	2.315	1564.8	5.7911		
2024	0.000562	1535	0	2	2.349		2.331	1564.9	5.8309		
2300	0.000641	1538	0 001	DPOM	2.378		2.300	1564.4	5.9058		
2000	0.000724	1545	0.001	PROM				1304.7	5.0420		
3204	0.00089	1547	0.001		Time Lag	0.009659	hs				
3504	0.000973	1547	0			0.57954	min				
3806	0.001057	1550	0			34.7721	seg		1° secuencial		2 ^e secuencial
4123	0.001145	1551	0		40	0.03864	hs	40	0.054	40	0.094
4405	0.001224	1553	0		80	0.07727	hs	80	0.09263568	80	0.132635678
4705	0.001307	1555	0		40	0.03864	hs	40	0.03863568	40	0.038635678
5004	0.00139	1554	0								
5305	0.001474	1556	0								
5605	0.001557	1556	0								
5905	0.00164	1228	0.001								
6222	0.001728	1557	0								
6504	0.001807	1559	0.001	Difusividad	1						
6805	0.00189	1559	0.001	8.455E-08	cm ⁺ /s						
7105	0.001974	1558	0								
7405	0.002057	1560	0	Solubilidad	1						
7704	0.00214	1560	0	0.52517	cm° (STP)/ cm	' atm					
8004	0.002223	1561	0								
8221	0.002211	1562	0.001								
0521	0.002311	1502	0.001								
8605	0.00239	1561	U								
8904	0.002473	1558	0								
9204	0.002557	1561	0.001								
9503	0.00264	1561	0.001								
0004	0.000700	1562	0.001								
9804	0.002723	1562	0.001								

Figura E.2. Hoja de cálculo para O₂ en membrana de PN-BOC.

Fecha	Gas	Polí	mero								
20-nov-14	N2	PN-BOC									
					0.14				y = 0.5441x - 0.01	49	
diámetro cm	àrea.cm*	espesor.um	volumen.cm		0.12				R ² = 0.9994		
1.24	1.20958	42.0	34.8								
				_	E 0.1						
					Ê 0.08						
T[°C]		=	35 ± 0.5								
P [atm]		=	2.1		.0.06	1					
					<mark>د</mark> 0.04						
					0.02						
		Pre	sión		0.02						
Tiempo	Tiempo	Superior	Inferior		0						
ms	horas	Torr	Torr		0	0.1	0.2	0.3	0.4 0.5	5	
0	0	1760	0				Tie	mpo (h)			
210	5.83E-05	1/49	0			dia /dt		D. manager dia	Denne a kili de l		
406	0.000113	1530	0		Experimental	dp/dt	CAS	P ₂ promedio	Permeabilidad		
1406	0.000234	1520	0	1	experimental 0.545	ruga 0.01795	GAS 0.527	1569.1	1 2120		
1906	0.000529	1540	- Ö	2	0.545	0.01705	0.527	1567.8	1 3135		
2406	0.000668	1544	Ő	3	0.040		0.020	1507.0	1.5170		
2906	0.000807	1550	Ŏ	PROM				1568.4	1.3158		
3405	0.000946	1553	0								
3905	0.001085	1556	0.001		Time Lag	0.027385	hs				
4414	0.001226	1557	0			1.64308	min				
4905	0.001363	1560	0			98.5848	seg		1° secuencial		2° secuencial
5405	0.001501	1562	0.001		40	0.10954	hs	40	0.3	40	0.53
5905	0.00164	1562	0		80	0.21908	hs	80	0.409538688	80	0.639538688
6905	0.001779	1503	0		40	0.10954	hs	40	0.109538688	40	0.109538688
7404	0.002057	1565	0								
7912	0.002198	1563	0		Difusividad						
8406	0.002335	1565	- 0		2.982E-08	cm*/s					
8907	0.002474	1564	0.001		215022 00						
9406	0.002613	1567	0.001		Solubilidad						
9907	0.002752	1567	0		0.33532	cm ³ (STP)	cm ³ atm				
10405	0.00289	1565	0.001								
10905	0.003029	1567	0								
11412	0.00317	1566	0								
11907	0.003308	1567	0								
12406	0.003446	1566	0.001								
12905	0.003585	1566	0								
13406	0.003724	1567	0								
13908	0.003863	1566	0.002								
14408	0.004002	1568	0.001								
14930	0.004147	1567	0								
15408	0.00428	1567	0.001								

Figura E.3. Hoja de cálculo para N_2 en membrana de PN-BOC.

Fecha	Gas	Polím	ero								
20-nov-14	CH4	PN-BOC									
				1.2							
diámetro,cm	área,cm ²	espesor,µm	volumen,cm ³	1							
1.24	1.20958	42.0	34.8								
				E 0.8							
				E				v = 0.7607	x - 0.1259		
T [°C]		=	35±0.5	je 0.6				R ² = 0	9999		
P [atm]		=	2.1	Se c							
				≏ 0.4							
					/						
			Presión	0.2							
Tiempo	Tiempo	Superior	Inferior								
ms	horas	Torr	Torr	0							
0	0	1757	0	0	0.5)	1	1.5	2		
259	7.19E-05	1706	0.001				riempo (h)				
1259	0.00035	1535	0.001								
2259	0.000628	1544	0			dp/dt		P ₂ promedio	Permeabilidad		
3259	0.000905	1550	0		Experimental	Fuga	GAS	Torr	Barrers		
4276	0.001188	1555	0	1	0.766	0.01785	0.749	1597.7	1.8340		
5259	0.001461	1558	0.001	2							
6259	0.001739	1561	0	3							
7259	0.002016	1562	0.001	PROM				1597.7	1.8340		
8259	0.002294	1564	0.001		-						
9258	0.002572	1562	0.001		Time Lag	0.165505	ns				
10258	0.002849	1564	0			9.93033	min		1 ^e cocuoncial		2º cocuoncial
11275	0.003131	1563	- ŭ		10	0.0000	seg				2 Secuencial
13261	0.003400	1564	ň		40	0.00202	ns	40	1.550001000	40	1.4/
14261	0.003961	1565	ŏ		40	1.32404	ns bc		0.662021822	40	2.132021822
15260	0.004239	1564	0.001		40	0.00202	IIS	40	0.002021022	40	0.002021622
16260	0.004517	1564	0								
17235	0.004754	1305	U		_						
18270	0.005075	1565	0	Difusivida	d						
19259	0.00535	1565	0	4.934E-09	cm²/s						
20259	0.005628	1565	0								
21259	0.005905	1565	0	Solubilida	d						
22258	0.006183	1566	0	2.82477	cm ³ (STP)/ cm ³	° atm					
23258	0.006461	1564	0								
24258	0.006738	1565	0								
25266	0.007018	1567	0								
26257	0.007294	1566	0								
27257	0.007571	1565	0								
28256	0.007849	1564	0								
29256	0.008127	1566	0.001								
30256	0.008404	1566	0								
31256	0.008682	1565	0								
32263	0.008962	1566	0.001								

Figura E.4. Hoja de cálculo para CH₄ en membrana de PN-BOC.

Fecha	Gas	Pol	ímero						1		
21-nov-14	CO2	PN-BOC		3	.5						
								y = 15.065x	- 0.3783		
					2			R ² =	1		
diámetro,cm	area,cm ⁻	espesor,µm	volumen,cm ⁻	a ²	.5				() · · · · · · · · · · · · · · · · · ·		
1.24	1.20958	42.0	34.8	5						_	
				E	2						
TIPCI		-	25 + 0 5	.5.1	5						
Platml		-	55 ± 0.5	S_ 1			T_				
r [atin]		-	2.1	-	1					_	
					.5						
		Pre	esión		0						
Tiempo	Tiempo	Superior	Inferior		0	0.1	0.2	0.3	0.4 0.5		
ms	horas	Torr	Torr		-		T!				
0	0	1759	0				Tiempo	(n)			
190	5.28E-05	1759	0								
564	0.000157	1630	0.001					_			
1079	0.0003	1532	0			dp/dt		P ₂ promedio	Permeabilidad		
1564	0.000434	1535	0		Experimental	Fuga	GAS	Torr	Barrers		
2066	0.000574	1539	0	1	15.063	0.01785	15.045	1572.4	37.4542		
2564	0.000712	1541	0	2	15.162		15.144	15/0.8	37.7394		
3065	0.000851	1544	0 001	3				1571.6	27 5059		
3004	0.00099	1540	0.001	PROIV				13/1.0	37.5908		
4003	0.001123	1551	0.002		Timo Lag	0.025111	hc				
5064	0.001271	1555	0.002		Time Lag	1 50667	min				
5564	0.001546	1557	ŏ			90,4003	Seg		1° secuencial		2° secuencia
6068	0.001686	1558	ŏ		40	0 10044	he	40	0.25	40	0.5
6564	0.001823	1557	0		80	0.20089	hs	80	0.35044474	80	0.600444739
7063	0.001962	1558	0		40	0.10044	hs	40	0.10044474	40	0.100444739
7563	0.002101	1559	0			0110011			0120011171		01200111705
8075	0.002243	1559	0.001								
8567	0.00238	1562	0								
9062	0.002517	1562	0								
9567	0.002658	1562	0								
10067	0.002796	1562	0		Difusividad						
10568	0.002936	1563	0		3.252E-08	cm ⁻ /s					
11000	0.003074	1503	0		Colubilidad						
11574	0.003213	1505	0		0 70500	cm [*] (STP)	(cm* atm				
12566	0.003352	1564	0		0.76390	un (OTF)	on aut				
12500	0.003491	1.004	U								
13066	0.003629	1565	0								
13566	0.003768	1565	0								
14066	0.003907	1564	0								
14000	0.003307	1.504	0								
14566	0.004046	1561	0								
15072	0.004187	1565	0								
15567	0.004324	1566	0								
15507	0.004324	1500									
16066	0.004463	1564	0								

Figura E.5. Hoja de cálculo para CO₂ en membrana de PN-BOC.

Fecha	Gas	Polímero							1		
15-ene-15	H2	PN-BOC ₅		0.7							
				0.6				y = 21.69	2x - 0.0114	_	
diámetro.cm	área,cm*	espesor,µm	volumen,cm ²					к	-=1		
1.24	1.20958	57.0	34.8	Ē 0.4				- t			
				5 0 2				1			
TING			25 1 2 5	e U.S				- F - 2			
T ["C]		=	35±0.5	■ 0.2						_	
Plannj		-	2.1	0.1							
				0				V			
				c	0.01	0.02 0	0.03 0.0	0.05	0.06 0.07		
		Pres	sión				Tiempo (h)				
Tiempo	Tiempo	Superior	Interior								
ms	noras	1761	Iorr								
187	5 19E-05	1569	0								
357	9.92E-05	1532	0.001			dp/dt		P- promedio	Permeabilidad		
540	0.00015	1539	0.001		Experimental	Fuga	GAS	Torr	Barrers		
642	0.000178	1543	0.001	1	21.675	0.02088	21.654	1565.0	73.5039		
731	0.000203	1544	0.001	2	21.666		21.645	1565.5	73.4501		
832	0.000231	1547	0.001	3	21.649		21.628	1569.6	73.2037		
931	0.000259	1550	0.001	PROM				1566.7	73.3859		
1032	0.000287	1552	0								
1187	0.00033	1555	0		Time Lag	0.000526	hs				
1259	0.00035	1555	0			0.03153	min		19		
1342	0.000373	1557	0			1.09194	seg		1 secuencial		2 secuencial
1532	0.000338	1557	0		40	0.0021	ns be	40	0.021	40	0.047
1632	0.000453	1558	0.001		40	0.0042	hs	40	0.02310216	40	0.049102157
1731	0.000481	1559	0.001			0.0021	115		0.00210210		0.002102137
1832	0.000509	1560	0.002								
1931	0.000536	1560	0.002								
2042	0.000567	1562	0.003		_						
2191	0.000609	1561	0.003	Difusivida	d						
2262	0.000628	1562	0.004	2.862E-06	cm ⁺ /s						
2336	0.000649	1563	0.005	Calabilitie							
2431	0.000675	1561	0.004	Solubilida							
2531	0.000703	1562	0.005	0.19487	cm° (STP)/ cm	atm					
2031	0.000731	1503	0.005								
2741	0.000761	1564	0.006								
2831	0.000786	1563	0.006								
2931	0.000814	1564	0.006								
3031	0.000842	1563	0.008								
3179	0.000883	1563	0.009								
3251	0.000903	1563	0.009								
3331	0.000925	1564	0.01								
3441	0.000956	1564	0.01								
3530	0.000981	1564	0.011								

Figura E.6. Hoja de cálculo para H_2 en membrana de PN-BOC₅.

Fecha	Gas	Polímero								_	
15-ene-15	O ₂	PN-BOC,									
				0.6							
diámetro,cm	área,cm ²	espesor,µm	volumen,cm ³	0.5				y = 3.90	64x - 0.046		
1.24	1.20958	57.0	34.8	E				R ² =	0.9999		
				Ē ^{0.4}							
				g 0.3							
T[°C]	=	35 ± 0.5				- I.					
P [atm]	=	2.1		E 0.2		- E					
		Der		0.1							
Tiempo	Tiempo	Superior	Inferior	0		V	V	<u> </u>			
ms	horas	Torr	Torr	_		0.1	0.2	0.3	0.4		
0	0	1756	0.001	``	, ,	0.1	T	. 0.5	0.4		
179	4.97222F-05	1752	0.001				Tiempo (h))			
470	0.000130556	1562	ŏ							_	
769	0.000213611	1522	Ŏ								
1069	0.000296944	1525	0								
1379	0.000383056	1531	0			dp/dt		P ₂ promedio	Permeabilidad		
1670	0.000463889	1535	0		Experimental	Fuga	GAS	Torr	Barrers		
1969	0.000546944	1538	0	1	3.905	0.02088	3.885	1568.9	13.1536		
2269	0.000630278	1541	0	2	3.911		3.890	1573.0	13.1376		
2570	0.000713889	1546	0.001	3	3.961		3.940	1571.3	13.3206		
2870	0.000797222	1546	0	4	3.954		3.933	1568.4	13.3213		
3169	0.000880278	1549	0	PROM				1571.1	13.2039		
3477	0.000965833	1552	0		Time Lag	0.011776	hs				
3769	0.001046944	1554	0			0.70653	min				
4070	0.001130556	1555	0			42.392	seg		1° secuencial		2° secuencial
4369	0.001213611	1557	0		40	0.0471	hs	40	0.155	40	0.23
4069	0.001296944	1550	0 001		80	0.0942	hs	80	0.20210219	80	0.277102191
4909	0.001380278	1558	0.001		40	0.0471	hs	40	0.04710219	40	0.047102191
5579	0.001405050	1559									
5869	0.001540444	1551	0.001	Ditusivida	4						
6168	0.001713333	1562	0.001	1 277F-07	cm*/s						
6469	0.001796944	1561	ŏ	1.2772 07							
6768	0.00188	1561	ŏ	Solubilida	d						
7071	0.001964167	1563	0	0.78560	cm° (STP)/ cm	atm					
7371	0.0020475	1562	0								
7677	0.0021325	1564	0								
7968	0.002213333	1563	0.001								
8268	0.002296667	1564	0								
8571	0.002380833	1565	0								
8869	0.002463611	1563	0.001								
9170	0.002547222	1564	0.001								
9469	0.002630278	1564	0								

Figura E.7. Hoja de cálculo para O_2 en membrana de PN-BOC₅.

Fecha	Gas	Polímero									
15-ene-15	N2	PN-BOC ₅									
					1 25						
diámatra cm	àrea cm*	aspasor um	wolumen cm ²	``				y = 0.9	534x - 0.0352		
1 24	1 20958	57.0	34.8		0.3			R ²	= 0.9999		
1.24	1.20958	57.0	34.0		2.25		1				
				- ÷	5.25						
TI°CI		=	35±0.5	Ê	0.2		1	A /			
P [atm]		=	2.1	, Ę							
				esi,	0.15		1				
				-	0.1						
		-					1/	1			
-	-	Pre	sión		0.05						
Tiempo	Tiempo	Superior	Interior		0		-				
	noras	1755	1011		0	0.2	0.4	0.6	0.8 1		
339	9.42E-05	1643	- ŭ		0	0.2	Tiemp	o (h)	0.0 1		
849	0.000236	1519	ŏ					. /			
1338	0.000372	1525	ŏ			dp/dt		P ₂ promedio	Permeabilidad		
1838	0.000511	1531	0.001		Experimental	Fuga	GAS	Torr	Barrers		
2338	0.000649	1538	0	1	0.953	0.02088	0.932	1566.7	3.1598		
2837	0.000788	1543	0	2	0.965		0.944	1571.5	3.1918		
3337	0.000927	1545	0.001	3	0.969		0.948	1570.5	3.2075		
3837	0.001066	1549	0	PROM				1569.5	3.1864		
4347	0.001208	1553	0								
4837	0.001344	1556	0		Time Lag	0.036920	ns				
5330	0.001482	1555	0			2.21523	min		1 ^e cocuoncial		2º cocuoncia
6336	0.001021	1557	0.001			132.914	seg	10	1 Secuencial	40	2 secuencia
6836	0.001899	1559	0.001		40	0.14/08	ns bc	40	0.39	40	0.74769109
7335	0.002038	1561	ŏ		40	0.25550	ns hc	40	0.33708198	40	0.14768196
7845	0.002179	1560	Ō			0.14700	115	40	0.14700150		0.14700130
8335	0.002315	1561	0								
8834	0.002454	1562	0.001								
9335	0.002593	1561	0								
9834	0.002732	1561	0	Ditusividad							
10334	0.002871	1562	0	4.074E-08	cm ⁻ /s						
10834	0.003009	1503	0.001	Colubilidad							
11545	0.003131	1564	0.001	0 59440	cm [×] (STP)/ cm	' atm					
12334	0.003237	1561	0.001	0.00440	cin (on)/ cin	aun					
12834	0.003565	1564	0.001								
12222	0.002704	1566	0								
13555	0.003704	1500	0								
13834	0.003843	1563	0								
14333	0.003981	1562	0.001								
14844	0.004123	1563	0								
15334	0.004259	1563	0								
15834	0.004398	1563	0								
16333	0.004537	1563	0.001								

Figura E.8. Hoja de cálculo para N_2 en membrana de PN-BOC₅.

15-ene-15 CH4 PN-BOC5 diametro.cm area.cm* espesor.µm volumen.cm* 1.24 1.20958 57.0 34.8 1 1.2 1 1.2 1.24 1.20958 57.0 34.8 1 1 1.2 1 1.24 1.20958 57.0 34.8 1 1.2 1 1.2 1 1.2 1 1.2 1 1.2 1.2 1.2 1 1.2 1.2 1.2 1 1.2 1.2 1.2 1 1.2 1.2 1.2 1 1.2 1.2 1.2 1 1.2 1.2 1.2 1 1.2 0 0.2 1 1.5 2 1.5 1 1.5 2 1.5 1 1.5 2 1.5 1 1.5 2 1.5 1 1.5 2 1.5 1.55 0.0001	
diámetro,cm àrea,cm* espesor,µm volumen,cm* 1.24 1.20958 57.0 34.8 T [*C] = 35 ± 0.5 P [atm] = 2.0 Tiempo Tiempo Superior Inferior 0.0 0 0 1751 0 0 1751 0 0 1751 0 1751 0 1565 0.000431 1530 2267 0.00063 1535 2267 0.000824 1542 0 0 1542 0 0 1542	
diametro.cm area.cm [*] espesor.µm volumen.cm [*] 1.24 1.20958 57.0 34.8 T [*C] = 35 ± 0.5 P [atm] = 2.0 Tiempo Tiempo Superior ms horas Torr 0 0 1751 0 0 1751 193 5.36E-05 1701 1565 0.000435 1530 2267 0.00063 1535 2267 0.00063 1542 2967 0.00063 1542	
diámetro,cm área,cm ⁻ espesor,µm volumen,cm ⁻ 1.24 1.20958 57.0 34.8 T [*C] = 35±0.5 1 P [atm] = 2,0 5 T [*C] = 35±0.5 5 P [atm] = 2,0 5 T [*C] = 35±0.5 5 P [atm] = 2,0 0 Tiempo Tiempo Superior Inferior 0 0 1751 0 193 5.36E-05 1701 0 366 0.000241 1522 0 1555 0.000435 1530 0.001 2267 0.00063 1535 0 2967 0.000824 1542 0 2967 0.000824 1542 0 2967 0.000824 1542 0 2967 0.000824 1542 0	
1.24 1.20958 57.0 34.8 T ["C] = 35 ± 0.5 P [atm] = 2.0 Tiempo Tiempo Superior Tiempo Torr Torr 0 0 1751 0 193 5.36E-05 1701 0 866 0.000241 1522 0 1565 0.000435 1533 0.001 2267 0.00063 1535 0 2967 0.000824 1542 0 0 0.001 0.01 0.01	
T ["C] = 35±0.5 P [atm] = 2,0 Tiempo Tiempo Superior Tiempo Torr Torr 0 0 1751 0 0 0 1751 0 193 5.36E-05 1701 0 866 0.000241 1522 0 1555 0.000435 1533 0.001 2267 0.000824 1542 0 2967 0.00824 1542 0 0 0 0 0	
T ["C] = 35 ± 0.5 5 0.6 P [atm] = 2.0 5 0.6 Image: Strength of the strengen of the strengt of the strength of the s	
T [*C] = 35 ± 0.5 P [atm] = 2.0 Tiempo Tiempo Superior Tiempo Torr Torr 0 0 1751 0 193 5.36E-05 1701 0 1565 0.000435 1530 0.001 2267 0.00063 1535 0 2967 0.000824 1542 0 2967 0.000824 1542 0	
P [atm] = 2.0	
Tiempo Tiempo Superior Inferior ms horas Torr Torr 0 0 1751 0 193 5.36E-05 1701 0 866 0.000241 1522 0 1565 0.000435 1533 0.001 2267 0.000824 1542 0 2967 0.000824 1542 0	
Tiempo Tiempo Superior Inferior 0 0 1751 0 193 5.36E-05 1701 0 866 0.000241 1522 0 1565 0.000435 15330 0.001 2267 0.000824 1542 0 2967 0.000824 1542 0	
Tiempo Tiempo Superior Inferior ms horas Torr Torr 0 0 1751 0 0 0.5 1 1.5 2 193 5.36E-05 1701 0 0 0.5 1 1.5 2 1565 0.000435 1530 0.001 0	
Tiempo Tiempo Superior Inferior ms horas Torr Torr 0 0 0.5 1 1.5 2 193 5.36E-05 1701 0 0 0.5 1 1.5 2 193 5.36E-05 1701 0 0 0.5 1 1.5 2 1565 0.000241 1522 0	
ms horas Torr Torr 0 0.5 1 1.5 2 193 5.36E-05 1701 0 0 0.5 1 1.5 2 193 5.36E-05 1701 0 <td></td>	
Initial Initial <t< td=""><td></td></t<>	
193 5.36E-05 1701 0 Tiempo (h) 866 0.000241 1522 0 1565 0.000435 1530 0.001 2267 0.00063 1535 0 2967 0.000824 1542 0 dp/dt P2 promedio Permeabilidad	
155 0.000241 1522 0 1565 0.000435 1530 0.001 2267 0.00063 1535 0 2967 0.000824 1542 0 2967 0.000824 1542 0	
1565 0.000435 1530 0.001 2267 0.00063 1535 0 2967 0.000824 1542 0 2967 0.000824 1542 0	
2267 0.00063 1535 0 2967 0.000824 1542 0 2767 0.000824 1542 0	
2967 0.000824 1542 0 dp/dt P2 promedio Permeabilidad	
3004 I 0.001018 I 1545 I 0.001 I Experimental IFuga IGAS ITorr Barrers	
4365 0.001213 1547 0.001 1 1.445 0.02088 1.424 1561.2 4.8463	
5075 0.00141 1550 0.001 2 1.444 1.423 1556.5 4.8567	
5767 0.001602 1551 0.001 3 1.444 1.423 1556.2 4.8578	
6466 0.001796 1551 0 PROM 1558.0 4.8536	
7165 0.00199 1553 0	
7865 0.002185 1552 0 Time Lag 0.113772 hs	
8566 0.002379 1555 0 6.8263 min	
9265 0.002574 1554 0.001 409.578 seg 1° secuencial 2'	secuencial
9965 0.002768 1555 0 40 0.45509 hs 40 1.06 40	1.56
10664 0.002962 1556 0 80 0.91017 hs 80 1.51508651 80 2	2.015086505
11365 0.003157 1555 0 40 0.45509 hs 40 0.45508651 40 0).455086505
12070 0.003333 1555 0	
12/7/0 0.003347 1355 0	
14170 0.003026 1555 0	
14105 0.00350 1.557 0 Ditusividad	
14500 0.00435 1555 0 1320-08 cm ³ /s	
16269 0.004519 1555 0	
16970 0.004714 1556 0 Solubilidad	
17668 0.004908 1557 0 2.79007 cm ⁻ (STP)/ cm ⁻ atm	
18369 0.005103 1556 0	
19069 0.005297 1556 0	
19769 0.005491 1556 0	
20469 0.005686 1557 0.001	
21168 0.00588 1558 0	
21868 0.006074 1556 0.001	

Figura E.9. Hoja de cálculo para CH_4 en membrana de PN-BOC₅.

Fecha	Gas	Polímero								1		1			
15-ene-15	CO2	PN-BOC ₅		7	1						у :	= 25.32x - 0.72	61		
				6				1				R ² = 1			
diámetro cm	àrea cm*	espesor um	volumen cm ²												
1 24	1 20958	57.0	34.8	5											
1.24	1.20958	57.0	34.0	P 4						Λ				-	
								Γ I						-	
T [°C]		=	35±0.5	19 3 S											
P [atm]		=	2.1	Ĕ,											
				2						- H .					
				1				- t.						_	
		Dra	sián	0				<u> </u>							
Tiempo	Tiempo	Superior	Inferior		_		0.1	<u> </u>			-	0.6 0.7	.		
ms	horas	Torr	Torr		U		0.1	U.2 U	0.3 0.4	+ 0	.5	0.6 0.7			
0	0	1754	0						Tiempo (h)					+	
212	5.89E-05	1747	ŏ											-	
538	0.000149	1607	0					dp/dt		P ₂ prom	edio	Permeabilida	d		
1027	0.000285	1530	0.001			Expe	rimental	Fuga	GAS	Torr		Barrers			
1527	0.000424	1534	0		1		25.327	0.02088	25.307	1	573.1	85.4595			
2027	0.000563	1535	0.001		2		25.515		25.494	1	572.8	86.1099			
2526	0.000702	1539	0.001		3		25.559		25.538	1	.572.7	86.2651			
3027	0.000841	1541	0	PROM						1	572.9	85.9448			
3527	0.00098	1544	0			-		0.000677	h -						
4036	0.001121	1548	0			IIm	e Lag	0.028677	ns					_	
4527	0.001258	1548	0					102 227	min			1º cocuoncia			° cocuoncial
5526	0.001530	1552						105.257	seg			1 Secuencia		_ 4	secuencial
6026	0.001535	1555	- ŏ				40	0.114/1	ns bc		40	0.3	40	9	0.48
6526	0.001813	1555	0.001				40	0.22942	ns hc		40	0.41470774			0.394707741
7028	0.001952	1556	0					0.114/1	115		40	0.114/0//4			5.114/0//41
7535	0.002093	1557	0											-	
8027	0.00223	1559	0.001												
8528	0.002369	1557	0												
9028	0.002508	1559	0												
9528	0.002647	1561	0												
10028	0.002786	1561	0	Ditusiv	Ida	d									
10527	0.002924	1560	0.001	5.245E-	08	cm-/	S								
11034	0.003065	1560		Solubil	ida	d									
12027	0.003202	1562		12 452	29	u cmĭ	(STP)/cm	* atm							
12520	0.003481	1563	+ ŏ	12.452		0	(011)/011	aun						-	
13030	0.003619	1563	0											+	
13531	0.003759	1563	0.001											+	
1/020	0.003733	1564	0.001											+	
14552	0.003037	1564	0.001												
15030	0.004175	1563	0												
15529	0.004314	1565	0												
13325	0.004514	1303	v												

Figura E.10. Hoja de cálculo para CO₂ en membrana de PN-BOC₅.

Fecha	Gas	Polímero				1	1	1		1	1
03-dic-14	H2	PN-BOC ₁₀		0	.45						
					0.4			A			
-1-7	1			0	.35	A					
diametro,cm	area,cm	espesor,µm	volumen,cm		0.2						
1.24	1.20958	38.0	54.8	5	0.5						
				<u>5</u> 0	.25			1			
TI°CI		=	35 + 0.5	Si	0.2						
Platml		=	2 1	<u>2</u> o	.15						
					01			· · · / .	- 27 035v - 0 0	075	
									p ² - 0 0000		
				0	.05	- V		V	K = 0.5555		
		Pre	sión		0						
Tiempo	Tiempo	Superior	Inferior		0	0.01	0.02	0.03	0.04	0.05	
ms	horas	Torr	Torr				Tiem	oo (h)			
174	4 925 05	1/00	0.001					.,			
274	4.83E-05	1518	0.001								1
2/4	9.695-05	1525	0			dp/dt		P- promedio	Permeabilidad		
448	0.000124	1520	0.001		Experimenta	Fuga	GAS	Torr	Barrers	•	
549	0.000124	1534	0.001		27.95	3 0.02231	27.931	1560.3	63.3994		
656	0.000182	1537	0		2 27.96	0	27.937	1559.8	63.4336		
748	0.000208	1539	0		3 27.87	8	27.856	1559.7	63.2535		
849	0.000236	1541	0.001	PROM				1559.9	63.3621		
948	0.000263	1547	0.002								
1049	0.000291	1546	0.002		Time Lag	0.000268	3 hs				
1161	0.000323	1547	0.002			0.01611	. min				
1248	0.000347	1549	0.004			0.96653	seg		1° secuencia		2° secuencial
1357	0.000377	1551	0.004		4	○ 0.00107	7 hs	40	0.018	46	0.032
1448	0.000402	1552	0.004		8	0.00215	5 hs	80	0.01907392	86	0.033073922
1545	0.00045	1554	0.005		4	0.00107	/ ns	40	0.00107392	40	0.001073922
1747	0.000485	1555	0.006								
1849	0.000514	1556	0.006								
1947	0.000541	1556	0.007	Ditusivida	ad						
2056	0.000571	1555	0.009	2.490F-0	6 cm ² /s						
2237	0.000621	1556	0.012	2.1.502 0.							
2320	0.000644	1556	0.011	Solubilida	ad						
2406	0.000668	1557	0.011	0.1933	9 cm ³ (STP)/ ci	n ³ atm					
2479	0.000689	1557	0.012								
2561	0.000711	1557	0.012								
2648	0.000736	1557	0.014								
2756	0.000766	1559	0.015								
2848	0.000791	1559	0.014								
2948	0.000819	1559	0.016								
3049	0.000847	1557	0.016								
3158	0.000877	1559	0.017								
3247	0.000902	1558	0.017								
3348	0.00093	1559	0.019								
5540	0.00035	1333	0.015								

Figura E.11. Hoja de cálculo para H_2 en membrana de PN-BOC₁₀.

Fecha	Gas	Polímero									1
03-dic-14	02	PN-BOC10									
									v = 4.4228x - 0	0321	
				0.3	3				R ² = 0.999	9	
diámetro,cm	area,cm ⁻	espesor,µm	volumen,cm ⁻	0.25	.					-	l
1.24	1.20958	38.0	34.8	0.2	'						
				🛛 🚡 0.2	2						
TICL		-	35 + 0 5	Ĕ							
Platml		=	33 1 0.5	5 ^{0.15}	° 🧳			t			
			4.4	ũ 0.1				- E /			
				-							
				0.05							
		Pres	ión							_	
Tiempo	Tiempo	Superior	Inferior		, 	0.05	0.1	0	15 (
ms	horas	Torr	Torr		0	0.05			15 (J.2	
0		1/59					Tiempo	(n)			l
1/8	4.94E-05	1520									J
430	0.000127	1520	0.001								
1057	0.00021	1527	0.001			dp/dt		P- promedio	Permeabilidad		
1358	0.000377	1531	0		Experimental	Fuga	GAS	Torr	Barrers		
1657	0.00046	1535	0.001	1	4.423	0.02231	4,400	1568.1	9,9381		
1957	0.000544	1537	0.001	2	4.464		4.442	1567.3	10.0367		
2269	0.00063	1544	0	3	4.466		4.444	1567.0	10.0430		
2555	0.00071	1546	0	PROM				1567.5	10.0059		
2857	0.000794	1547	0.001								
3157	0.000877	1552	0		Time Lag	0.007258	hs				
3457	0.00096	1550	0			0.43547	min				
3756	0.001043	1552	0			26.1282	seg		1° secuencial		2° secuencia
4057	0.001127	1554	0 001		40	0.02903	hs	40	0.08	46	0.14
4574	0.001213	1558	0.001		80	0.05806	ns	80	0.10903138	80	0.169031383
4057	0.001377	1559	0.002		40	0.02903	ns	40	0.02903138	40	0.029031383
5255	0.00146	1559	ŏ								
5555	0.001543	1559	Ō								
5856	0.001627	1560	0								
6156	0.00171	1560	0	Ditusivida	d						
6467	0.001796	1561	0.001	9.211E-08	cm*/s						
6755	0.001876	1561	0								
7055	0.00196	1562	0	Solubilida	d						
7354	0.002043	1562	0	0.82555	cm (STP)/cm	aun					
7055	0.002120	1305	U								
7955	0.00221	1564	0								
8254	0.002293	1564	0								
8566	0.002379	1563	0.001								
8854	0.002459	1564	0								
9154	0.0025/12	1564	0								
9454	0.002545	1565									
0754	0.002020	1505									
9754	0.002709	1565	U								

Figura E.12. Hoja de cálculo para O₂ en membrana de PN-BOC₁₀.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
diámetro,cm àrea,cm [*] espesor,μm volumen,cm [*] 0.25 y = 1.0038x - 0.0234 1.24 1.20958 38.0 34.8 0.2 T ["C] = 35 ± 0.5 0.15 P [atm] = 2.1 0.2 Output 0.2 0.2 0.2 0.15 0.2 0.15 0.2 0.15 0.2 0.15 0.2 0.15 0.05 0.05	
diámetro,cm àrea,cm* espesor,µm volumen,cm* 1.24 1.20958 38.0 34.8 0.2 T [°C] = 35±0.5 0.15 P [atm] = 2.1 0.2 P [atm] = 0.2 P [atm] = 0.15 0.05 0.05	
International 1/20958 38.0 34.8 0.2 T [°C] = 35±0.5 [6] 0.15 P [atm] = 2/1 [6] 0.15	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
P [atm] = 2.1 9 0.1 Presión 0.05	
Presión 0.05	
0.05	
Presión	
Tiempo Tiempo Superior Inferior	
ms horas Torr Torr	
0 0 1758 0 0 0.2 0.4 0.6 0.8	
180 0.00005 1726 0 Hempo (n)	
586 0.000163 1597 0	
1082 0.000301 1523 0.001 dp/dt P2 promedio Permeabilidad	
1582 0.000439 1530 0 Experimental Fuga GAS Torr Barrers	
2082 0.000578 1538 0 17 1.004 0.02231 0.9827 1570.9 2.2140	
2582 0.000/1/ 1540 0 2 1.009 0.987 1569./ 2.226/	
3051 0.000855 1.540 0 3 1.008 0.585 1.505.4 2.2251	
3263 0.000390 1330 0 PROW 1306.7 2.2233	
4683 0.001273 1556 0 Time lag 0.023411 hs	
5084 0.001412 1555 0.001	
5584 0.001551 1558 0 84.2797 seg 1" secuencial	2° secuencial
6085 0.00169 1559 0 40 0.09364 bs 40 0.28	0 0.43
6589 0.00183 1562 0 80 0.18729 hs 80 0.373644152	0 0.523644152
7084 0.001968 1561 0 40 0.09364 hs 40 0.093644152	0.093644152
7583 0.002106 1562 0.001	
8084 0.002246 1562 0.001	
8584 0.002384 1562 0	
3084 0.002525 1305 0 9594 0.002525 1554 0 Ditusividad	
10087 0.002802 1564 0 2.856E-08 cm ^{-/} s	
10583 0.00294 1565 0.001 11105 0.00395 1555 0.001	
11583 0.003218 1565 0.001 0.59171 cm (STP)/ cm atm	
12084 0.003357 1304 0 12522 0.003405 1564 0	
13083 0.003634 1565 0	
13586 0.003774 1565 0	
14083 0.003912 1565 0	
14603 0.004056 1565 0	
15085 0.00419 1564 0	
15583 0.004329 1564 0	
16082 0.004467 1565 0	

Figura E.13. Hoja de cálculo para N_2 en membrana de PN-BOC₁₀.

Fecha	Gas	Polímero		1.2						1	
03-dic-14	CH4	PN-BOC ₁₀		1.2							
				1							
								- 1 53/0v - 0	1101		
diámetro,cm	area,cm*	espesor,µm	volumen,cm ⁻	-				y = 1.3349x=0.	1191		
1.24	1.20958	38.0	34.8	50.8				K_ = T			
				E							
				19 U.B							
T[°C]		=	35 ± 0.5	e o d							
P [atm]		=	2.2	■ 0.4							
				0.2							
		Drogi	á			- X					
Tiempo	Tiempo	Superior	on Inferior	0							
me	horas	Torr	Torr	0	0.5		1	1.5	2		
0	0	1857	0			Tie	empo (h)				
333	9.25E-05	1829	0								
1132	0.000314	1612	ŏ							-	
1935	0.000538	1620	ŏ			dp/dt		P ₂ promedio	Permeabilidad		
2735	0.00076	1627	0.001		Experimental	Fuga	GAS	Torr	Barrers		
3550	0.000986	1634	0.001	1	1.534	0.02231	1.512	1653.9	3.2377		
4332	0.001203	1635	0	2	1.533		1.511	1653.7	3.2361		
5134	0.001426	1638	0	3	1.529		1.506	1655.1	3.2235		
5935	0.001649	1642	0	PROM				1654.2	3.2324		
6736	0.001871	1642	0								
7534	0.002093	1645	0.001		Time Lag	0.077595	hs				
8335	0.002315	1644	0			4.65568	min				
9148	0.002541	1645	0.001			279.341	seg		1° secuencial		2° secuencial
9934	0.002759	1646	0.001		40	0.31038	hs	40	0.77	40	1.2
10734	0.002982	1647	0.001		80	0.62076	hs	80	1.08037853	80	1.510378526
11534	0.003204	1646	0.001		40	0.31038	hs	40	0.31037853	40	0.310378526
12333	0.003426	1649	0.001	Ditusividas							
13133	0.003048	1048	0.001	P 616E 00	emt/e						
13550	0.003871	1640	0.001	0.0102-09	ciii /S						
1553/	0.004030	1645	0.001	Solubilidad							
16333	0.004515	1649	0.001	2 85141	cm* (STP)/ cm*	atm					
17134	0.004759	1648	0.001	2.00141							
17934	0.004982	1647	0.001								
18733	0.005204	1647	0.001								
19534	0.005426	1647	0.001								
20342	0.005651	1648	0.001								
21122	0.00587	1647	0.001								
21155	0.00587	1047	0.001								
21939	0.006094	1646	0.001								
22738	0.006316	1646	0.001								
23538	0.006538	1646	0.001								
24332	0.006759	1648	0.001								
25132	0.006981	1649	0.001								
25940	0.007206	1647	0.001								
23340	0.007200	1047	0.001								

Figura E.14. Hoja de cálculo para CH₄ en membrana de PN-BOC₁₀.

Fecha	Gas	Polímero									_	
04-dic-14	CO2	PN-BOC ₁₀										
				5	1							
diámatra cm	làrea cm ⁵	espesor um	wolumen cm ²	4.5				1		1		
diametro,cm	1 20058	28 0	24.8	4								
1.24	1.20958	38.0	34.0	2 3.5								
				<u>5</u> 3								
TI°CI		=	35±0.5	= 25								
P [atm]		=	21					- +				
				ě 1						7 101 0 522		
				- 1.5					y - 2	D ² = 1		
		_		1						K" – 1		
T:	T:	Pres	sion	0.5								
Tiempo	Tiempo	Superior	Interior	0								
ms	noras	1760	Iorr		0	0	.1	0.2	0.3	0.4	+ _	
269	7.475-05	1729	H õ I					Tiempo (h)			
770	0.000214	1527	H ŏ									
1284	0.000357	1531	t õ		- 1		dp/dt		P ₂ promedio	Permeabilidad		
1769	0.000491	1533	ŏ			Experimental	Fuga	GAS	Torr	Barrers		
2268	0.00063	1539	ŏ		1	27.187	0.02231	27.165	1570.1	61.2755		
2768	0.000769	1541	0.001		2	27.440		27.418	1571.2	61.8031		
3273	0.000909	1544	0.001		3							
3768	0.001047	1545	0	PROM					1570.6	61.5393		
4272	0.001187	1549	0									
4783	0.001329	1550	0			Time Lag	0.019602	hs				
5272	0.001464	1553	0				1.17612	min				
5772	0.001603	1554	0				70.5675	seg		1° secuencial		2° secuencial
6272	0.001742	1555	0		_	40	0.07841	hs	40	0.2	40	0.39
6//1	0.001881	1557	0			80	0.15682	hs	80	0.2784083	86	0.468408297
7271	0.00202	1558	0.001			40	0.07841	hs	40	0.0784083	40	0.078408297
9291	0.002135	1560	0.002									
8771	0.0023	1559										
9271	0.002575	1560	0.001	Ditusivid	ad							
9770	0.002714	1560	0	3.410E-0	08	cm*/s						
10270	0.002853	1562	0									
10770	0.002992	1563	0.001	Solubilid	ad							
11270	0.003131	1561	0	13.7137	70	cm° (STP)/ cm	' atm					
11779	0.003272	1562	0									
12270	0.003408	1561	0									
12769	0.003547	1564	0									
13269	0.003686	1564	0									
13769	0.003825	1564	0									
14270	0.003964	1564	0									
14768	0.004102	1562	0.001									
15278	0.004244	1563	0									
15768	0.00438	1564	0									

Figura E.15. Hoja de cálculo para CO₂ en membrana de PN-BOC₁₀.

rech	a l	Gas	Polimero							1			_	
09-ene	-15	H2	PN-BOC ₁₅		0.	5				- 26 006-	0.0	0.07		
									y.	R ² = 0.9	- 0.0 999	08/		
diámetro	o cm lá	area.cm*	lespesor um	lvolumen cm ²	0.	.4		$\boldsymbol{\Lambda}$						
1.24	4	1 20958	30.0	34.8	5					4				
1.2.4		1.20000	00.0	04.0	Ē.o.	.3				1				
										1				
T[°C]			=	35±0.5	.0 <u>1</u> 2	2				ł –				
P [atm]			=	2.1	Ę			- 1 -		1 /				
					0	1		- 1 J		1 /				
						-		- 17						
			Drog	lán		<u> </u>				<u>v</u>				
Tiemr	no	Tiempo	Superior	Inferior		ς,	_	0.01	0.02		0.02			
ms		horas	Torr	Torr			,	0.01	0.02		0.03	0.04	'	
0	, 	0	1759	0.002					Tiempo (I	h)				
250		6.94E-05	1748	0.001										
487	/	0.000135	1530	0		T		dp/dt		P ₂ prome	dio	Permeabilidad		
564	1	0.000157	1533	0.001			Experimental	Fuga	GAS	Torr		Barrers		
688	3	0.000191	1538	0.001		1	36.199	0.01937	36.180	15	65.1	64.6342		
779)	0.000216	1542	0		2	36.160		36.141	15	64.7	64.5823		
841	L	0.000234	1543	0		3	36.135		36.116	15	64.1	64.5621		
905		0.000251	1545	0	PROM					15	64.6	64.5928		
991		0.000275	1545	0.001			Timelag	0.000241	bc					
1097	1	0.000305	1551	0.001			rime Lag	0.000241	min				_	
1231	8	0.000348	1553	0.003				0.01440	500			1º secuencial		2° secuencial
1440	0 1	0.0004	1553	0.004		-	48	0.00705	he		40	0.014	40	2 Secuencial
1510	6	0.000421	1555	0.006		_	40	0.00030	hc		80	0.014	80	0.025
1592	2	0.000442	1556	0.006			40	0.00096	hs		40	0.0009641	40	0.000964096
1690	0	0.000469	1557	0.008				0.000000				0.0000011		0.000000000000
1796	6	0.000499	1557	0.008										
1891	1	0.000525	1557	0.01			_							
1990	0	0.000553	1559	0.011	Difusivi	dad	1							
2114	4	0.000587	1560	0.013	1./29E-	06	cm-/s							
2207	<u>/</u>	0.00065	1559	0.014	Solubili	dar								
2340	9	0.000000	1561	0.014	0 283	97	cm [*] (STP)/ cm [*]	' atm					_	
2490	õ –	0.000692	1562	0.015	0.203			Gum						
2597	7	0.000721	1562	0.016		-								
2690	0	0.000747	1562	0.017										
2814	4	0.000782	1562	0.019										
2891	1	0.000803	1561	0.02										
2990	0	0.000831	1563	0.02										
3091	1	0.000859	1562	0.021										
3235	5	0.000899	1562	0.023										
3305	5	0.000918	1563	0.024										
3391	1	0.000942	1563	0.025										

Figura E.16. Hoja de cálculo para H_2 en membrana de PN-BOC₁₅.

Fecha	Gas	Polímero									
09-ene-15	02	PN-BOC15									
								y = 5.080	05x - 0.0227		
				0.25				R ² =	0.9998		
diametro,cm	area,cm	espesor,µm	volumen,cm								
1.24	1.20958	50.0	34.8	÷ 0.2		A					
				0 0 15			A				
TICI		=	35 + 0.5	E 0.15							
Platml		=	2 1	· · · · · · · · · · · · · · · · · · ·		- t -					
				e e							
				0.05		- 1/	(E				
							- V				
		Presi	ión	0							
Tiempo	Tiempo	Superior	Inferior		0	0.05		0.1	0.15		
ms	horas	Torr	Torr				Tiempo (h)			
0	0	1598	0								
191	3.31E-05	1515	0.001	L		de /dt		D. promodia	Dermonhilider		
574	0.000104	1515	0		Experimental	ap/at	CAS	P ₂ promedio	Barrers		
971	0.000187	1513	0.001	1	5 086	0 01937	5 067	1561.5	9.0726		
1272	0.000353	1522	0.001	2	5,130	0.01557	5.110	1559.5	9,1622	_	
1585	0.00044	1530	0.001	3	5.110		5.090	1560.2	9,1218		
1870	0.000519	1534	0.001	PROM				1560.4	9.1189		
2171	0.000603	1537	0.001								
2471	0.000686	1538	0		Time Lag	0.004468	hs				
2771	0.00077	1541	0.001			0.26808	min				
3070	0.000853	1543	0.001			16.085	seg		1° secuencial		2° secuencial
3370	0.000936	1544	0.001		40	0.01787	hs	40	0.05	40	0.084
3685	0.001024	1547	0.001		80	0.03574	hs	80	0.06787226	80	0.101872257
3970	0.001103	1540	0.001		40	0.01787	hs	40	0.01787226	40	0.017872257
4272	0.001187	1548	0.001	Ditusivida							
4305	0.001203	1530	0.001	9 2255-09	cmt/s						
5170	0.001436	1551	0.002	5.5251-00	011170						
5472	0.00152	1552	0.001	Solubilida	1						
5783	0.001606	1553	0	0.74316	cm" (STP)/ cm"	atm					
6069	0.001686	1553	0.001								
6371	0.00177	1552	0								
6678	0.001855	1554	0.001								
6971	0.001936	1553	0.001								
7271	0.00202	1553	0.001								
/5/0	0.002103	1554	0.001							_	
7882	0.002189	1555	0.001								
8171	0.00227	1555	0								
8471	0.002353	1556	0.002								
8770	0.002436	1554	0.001								
9069	0.002519	1554	0.002								
9370	0.002603	1555	0								

Figura E.17. Hoja de cálculo para O_2 en membrana de PN-BOC₁₅.

Fecha	Gas	Polímero										
09-ene-15	N2	PN-BOC15										
					0.	25						
1.7										1462. 0.0177		
diametro,cm	area,cm	espesor,µm	volumen,cm		(12			y = 1	L.1463X-0.01//		
1.24	1.20958	30.0	34.8		_ `	5.2		/		R ² = 0.9998		
				j	Ē.	4.5						
TICL		=	35 + 0 5	£	≝ ^{∪.}	.15						
Platml		=	2 1	4	5			1		1		
, facing			4.4		S (0.1		- H				
					-			- i 🥒				
					0.	.05						
		Pre	sión									
Tiempo	Tiempo	Superior	Inferior			0						
ms	horas	Torr	Torr			0	0.1	0.2	0.3	0.4 0.5		
0	0	1767	0			0	0.1	Tiemp	o (h)	0.4 0.2	′ _	
208	5.78E-05	1/6/	0.001	L					. /			
/11	0.000198	1519	0.001				d 10 / d 1		D. manufacture de	Deserves		
1211	0.000336	1522	0 001		-		dp/dt	ICAS.	P ₂ promedio	Permeabilidad		
2221	0.000473	1530	0.001		1	1 15/	ruga 0.01927	GAS 1 12/	1566.9	2 02/15		
2231	0.00002	1540	0.001		-21	1.1.04	0.01937	1.134	1568.6	2.0245		
3214	0.000893	1546	0.001		-21	1 145		1.125	1567.3	2.0123		
3714	0.001032	1550	t õ	PROM	-	1.145		1.120	1567.5	2.0000		
4214	0.001171	1553	0.001		_							
4714	0.001309	1554	0		1	Time Lag	0.015441	hs				
5215	0.001449	1557	0				0.92646	min				
5730	0.001592	1559	0				55.5875	seg		1° secuencial		2° secuencial
6214	0.001726	1558	0.001			40	0.06176	hs	40	0.22	40	0.32
6714	0.001865	1561	0			80	0.12353	hs	80	0.28176394	80	0.381763936
7214	0.002004	1560	0			40	0.06176	hs	40	0.06176394	40	0.061763936
7714	0.002143	1561	0									
8213	0.002281	1563	0.001									
8/13	0.00242	1503										
9712	0.002505	1562		Ditusivi	heb							
10213	0.002038	1565	0.001	2 698F-	08 0	cm*/s						
10713	0.002976	1562	0.001	2.0502								
11213	0.003115	1563	0.001	Solubili	dad							
11713	0.003254	1565	0.001	0.567	59 0	cm" (STP)/ cm	' atm					
12212	0.003392	1564	0.001									
12727	0.003535	1564	0.001									
13212	0.00367	1565	0									
10710	0.003800	1565	-									
13/13	0.003809	1202	U									
14214	0.003948	1565	0									
14713	0.004087	1564	0.001									
15010	0.004226	1564	0		\rightarrow							
15215	0.004220	1304	U		_							
15714	0.004365	1564	0									
16225	0.004507	1565	0.001									

Figura E.18. Hoja de cálculo para N_2 en membrana de PN-BOC₁₅.

Fecha	Gas	Polímero				1			1		
09-ene-15	CH4	PN-BOC ₁₅									
				0.8							
				0.7				y =	1.3435x - 0.0837		
diámetro,cm	área,cm*	espesor,µm	volumen,cm ²						R ² = 1		
1.24	1.20958	30.0	34.8	0.6							
				5 0.5							
TINCI		_	25 + 0 5	- E					•		
I [C] D latml		-	35 I U.S	5 0.4						_	
Planni		-	2.1	ũ 0.3						_	
				-						_	
				0.2							
Tiempo	Tiempo	Presio	ón	0.1							
		Superior	Inferior								
ms	horas	Torr	Torr	0_							
0	0	1758	0	0	0.2 0	J.4 U.	.6 U.8 Tiamna (h)	1	1.2 1.4		
510	0.000142	1543	0.001				Tiempo (II)	1			
1306	0.000363	1539	0.001			dp/dt		P ₂ promedio	Permeabilidad		
2107	0.000585	1543	0		Experimental	Fuga	GAS	Torr	Barrers		
2927	0.000813	1550	0	1	l 1.344	0.01937	1.325	1576.0	2.3500		
3742	0.001039	1553	0		2 1.344		1.324	1576.4	2.3492		
4506	0.001252	1555	0.001		3 1.342		1.322	1577.6	2.3435		
5307	0.001474	1559	0	PROM				1576.7	2.34/5		
6112	0.001698	1559	0		Times I am	0.000000	h -				
6906	0.001918	1501	0 001		Time Lag	0.062300	ns				
7705	0.00214	1503	0.001			3./38	min		1º cocuoncial		2º cocuoncial
9206	0.002505	1562	0.001			224.20	seg		1 Secuencial		2 secuencial
10104	0.002383	1565	- Ö		40	0.2492	ns	40	0.62	40	0.80
10904	0.003029	1565	0 001		60	0.4984	ns bc	30	0.80919985	40	1.109199851
11704	0.003251	1565	0		40	0.2452	115	40	0.24313363	40	0.249199631
12510	0.003475	1566	ō								
13310	0.003697	1566	0								
14127	0.003924	1567	0								
14909	0.004141	1567	0	Ditusivida	d						
15708	0.004363	1565	0	6.688E-09) cm*/s						
16510	0.004586	1566	0								
17310	0.004808	1570	0	Solubilida	d						
18109	0.00503	1566	0.001	2.66763	3 cm* (STP)/ cm	r atm					
18908	0.005252	1563	0.001								
19725	0.005479	1500	0.001								
20509	0.005097	2002	0.001								
21308	0.005919	1565	0								
22107	0.006141	1565	0								
22907	0.006363	1567	0.001								
23706	0.006585	1568	0.001								
23700	0.000000	1567	0.001								
24312	0.000809	1569	0								
20322	0.007034	1008	0								
26111	0.007253	1567	0								

Figura E.19. Hoja de cálculo para CH₄ en membrana de PN-BOC₁₅.

O9-ene-15 CO2 PN-BOC15 4.5 diámetro,cm àrea,cm* espesor,µm volumen,cm* 3.5 1.24 1.20958 30.0 34.8 9 Z 1.24 1.20958 30.0 34.8 T [°C] = 35 ± 0.5 9 2.5 Y = 35 ± 1.5 1.5 1.5	
diāmetro,cm ārea,cm [*] espesor,µm volumen,cm [*] 3.5 1.24 1.20958 30.0 34.8 9 Z.5 9 2.5 9 P [atm] = 7.1 1	
diámetro,cm área,cm* espesor,µm volumen,cm* 3.5 1.24 1.20958 30.0 34.8 5 T [*C] = 35 ± 0.5 5 2 P [atm] = 2.1 1	
diametro.cm area.cm espesor.µm volumen.cm 3.3 1.24 1.20958 30.0 34.8 5 2.5 5 2.5 2 T [°C] = 35 ± 0.5 5 2 P [atm] = 2.1 1	
1.24 1.20958 30.0 34.8 50.25 T [°C] = 35 ± 0.5 50.2 P [atm] = 2.1 1	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
P[atm] = 2.1	
0.5	
Presión 0	
Tiempo Tiempo Superior Inferior 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35	
ms horas Torr Torr	
0 0 1759 0.001 Tiempo (n)	
437 0.000121 1660 0.001	
928 0.000258 1526 0.001	
1428 0.000397 1527 0.001 dp/dt P2 promedio Permeabilidad	
1928 0.000536 1535 0 Experimental Fuga GAS Torr Barrers	
2428 0.000674 1538 0 1 31.437 0.01937 31.418 1568.5 56.0042	
2930 0.000814 1540 0.001 2 31.611 31.592 1567.0 56.3683	
3430 0.000953 1542 0.002 37 31.577 31.557 1568.7 56.2474	
3937 0.001094 1544 0.001 PROM 1568.1 56.2066	
4430 0.001231 1347 0.001	
4929 0.001309 1550 0.001 Time Lag 0.01223/ hs	
5425 0.001506 1551 0 0.75421 (mm	2º cocuoncial
5727 0.001047 1554 0.001 444.054 seg 1 securitaria 2	
6930 0.00196 1557 0.002 40 0.005 40 0.15 40	0.24
7436 0.002066 1557 0.001 80 0.09785 165 80 0.19894/13 80	0.288947134
7944 0.002207 1557 0.002 40 0.04655 115 40 0.04654713 40	0.040347134
8429 0.002341 1558 0.002	
8932 0.002481 1559 0.002	
9429 0.002619 1560 0.001	
9929 0.002758 1560 0.001 Ditusividad	
10432 0.002898 1561 0.001 3.405E-08 cm*/s	
10955 0.003043 1561 0.002	
11431 0.003175 1561 0.001 Solubilidad	
11932 0.003314 1562 0.001 12.54526 cm° (STP)/ cm° atm	
12432 0.003453 1561 0.001	
12931 0.003592 1561 0.001	
13431 0.003731 1561 0.001	
13932 0.00387 1562 0.001	
14455 0.004015 1562 0.001	
14930 0.004147 1561 0.002	
15430 0.004286 1561 0.002	
15931 0.004425 1562 0.001	

Figura E.20. Hoja de cálculo para CO₂ en membrana de PN-BOC₁₅.

Fecha	Gas	Polímero								_	
09-dic-14	H2	PN-BOC ₆₀		0.3	1						
				0.25							
diámetro,cm	area,cm*	espesor,µm	volumen,cm ²	0.25		_ <u> </u>		y = 19.0	88x-0.0119		
1.24	1.20958	60.0	34.8	E 0.2				R ² =	0.9999		
				ಲ್ಲಿ							
TICL		=	35 ± 0.5	.5 0.15	_ /	1 E					
Platml		=	2 1	je 01				÷ .			
				L 0.1		- 1					
				0.05		- 1					
		Pre	sión			<u> </u>					
Tiempo	Tiempo	Superior	Inferior		0	0.01	0.02	0.02			
ms	horas	Torr	Torr		0	0.01	0.02	0.03	0.04		
0	0	1774	0				Tiempo (I	h)			
192	5.33E-05	1766	0								
364	0.000101	1546	0								
444	0.000123	1550	0			dp/dt		P ₂ promedio	Permeabilidad		
544	0.000151	1553	0		Experimental	Fuga	GAS	Torr	Barrers		
656	0.000182	1559	0	1	19.038	0.0169	19.021	1580.1	67.3133		
/44	0.000207	1560	0.001	2	19.152		19.135	1587.6	67.3977		
891	0.000248	1564	0	BROM 3	19.144		19.127	1589.9	67.2/33		
3/3	0.00027	1505		PROIVI				1363.9	07.5281		
1195	0.00023	1570	0		Time Lag	0.000623	hc				
1255	0.000349	1570	ŏ		Time Lag	0.03741	min				
1355	0.000376	1570	ŏ			2.24434	seg		1° secuencial		2 ^e secuencial
1445	0.000401	1575	Ö		40	0.002/19	hc	40	0.016	40	0.028
1543	0.000429	1574	0.001		80	0.00499	hs	80	0.01849371	80	0.030493713
1644	0.000457	1575	0.001		40	0.00249	hs	40	0.00249371	40	0.002493713
1744	0.000484	1577	0.001								
1843	0.000512	1578	0.002								
1944	0.00054	1577	0.002	Ditusivida	d						
2054	0.000571	1578	0.002	2.673E-06	cm ⁺ /s						
2205	0.000613	1578	0.003	Calubilida							
2280	0.000633	1578	0.003	Solubilida	a cm² (STB)/ cm²	otm					
2348	0.000652	1580	0.003	0.19140	un (STF)/un	aun					
25/3	0.00079	1579	0.003								
2643	0.000734	1579	0.004								
2760	0.000767	1580	0.005								
2843	0.00079	1581	0.005								
2944	0.000818	1580	0.005								
3043	0.000845	1581	0.006								
3190	0.000886	1581	0.006								
3254	0.000904	1581	0.006								
3343	0.000929	1582	0.007								
3454	0.000959	1582	0.007								

Figura E.21. Hoja de cálculo para H_2 en membrana de PN-BOC₆₀.

Fecha	Gas	Polímero									
09-dic-14	02	PN-BOC ₆₀									
				0.7				y = 2	2.5974x - 0.0646		
diametro,cm	area,cm	espesor,µm	volumen,cm	0.6		A			R ² = 1		
1.24	1.20958	60.0	34.8	O 0 5							
								A			
TIPCI		=	35 + 0 5	E 0.4							
Platml		=	2 2	2 0.3						_	
· [attri]			6.6	e o o		- 1					
				L 0.2		- 1					
				0.1		- L					
		Presi	ión	0							
Tiempo	Tiempo	Superior	Inferior	0	0.1	0.2 (0.3 0.4	4 0.5	0.6 0.7		
ms	horas	Torr	Torr	-			Tiomno (b)				
0	0	1866	0.001				nempo (II)				
199	5.53E-05	1862	0.001								
443	0.000123	1685	0.001			1 - 1 - 1		D	Derrore billing (
/03	0.000212	1618	0.001		Europei europei	dp/dt	CAS	P ₂ promedio	Permeabilidad		
1047	0.000291	1623	0.001	1	Experimental	ruga	GAS 2 576	10rr 1667.6	Barrers 0 6204		
1540	0.000374	1627	0.001	1	2.355	0.0109	2.570	1667.0	0.0304		
1945	0.000458	1634	- ŭ	2	2.013		2.555	1666.4	8 7331		
2245	0.000624	1637	ŏ	PROM	2.015		2.002	1667.0	8,6962		
2546	0.000707	1640	ŏ					100/10	010502		
2861	0.000795	1644	ŏ		Time Lag	0.024871	hs				
3146	0.000874	1647	0.001			1.49226	min				
3445	0.000957	1648	0			89.5357	seg		1° secuencial		2° secuencial
3745	0.00104	1648	0		40	0.09948	hs	40	0.29	40	0.47
4047	0.001124	1653	0		80	0.19897	hs	80	0.3894841	80	0.569484099
4345	0.001207	1653	0		40	0.09948	hs	40	0.0994841	40	0.099484099
4647	0.001291	1655	0								
4960	0.001378	1655	0.001								
5245	0.001457	1657	0								
5047	0.001541	1657	0	Ditucividad							
5146 5146	0.001024	1659	- North Contraction of the second sec	6 701E-08	cm [±] /s						
6445	0.00179	1659	ŏ	0.7012-00	0.1170						
6746	0.001874	1660	0.001	Solubilidad							
7060	0.001961	1661	0	0.98626	cm° (STP)/ cm	r atm					
7346	0.002041	1661	0.001								
7645	0.002124	1664	0.001								
7945	0.002207	1662	0								
8244	0.00229	1662	0								
8546	0.002374	1661	0								
8846	0.002457	1662	0.001								
9158	0.002544	1662	0								
9445	0.002624	1662	0								

Figura E.22. Hoja de cálculo para O₂ en membrana de PN-BOC₆₀.

Fecha	Gas	Polímero											
10-dic-14	N2	PN-BOC ₆₀									y = 0.5166x - (0.0787	
											R ² = 0.99	99	
						0.6							
diametro,cm	area,cm ⁻	espesor,µm	volumen,cm ⁻			<u>_</u>			£				
1.24	1.20958	60.0	34.8			0.5							
					÷	0.4							
TINCI			25 + 0.5		ē	0.4							
Distri		-	35 ± 0.5		Ę	03							
Plannj		-	2.2		jē;	0.0		- 1					
					ä	0.2							
					-						·		
		Pres	ión			0.1							
Tiempo	Tiempo	Superior	Inferior										
ms	horas	Torr	Torr			0						-	
0	0	1866	0			0	0.5	1	1	.5 2	2.5	3	
188	5.22E-05	1867	0						Tiem	po (h)			
526	0.000146	1664	0										
1026	0.000285	1619	0				dp/dt			P ₂ promedio	Permeabilida	d	
1525	0.000424	1626	0		E	xperimental	Fuga	GAS		Torr	Barrers		
2025	0.000563	1631	0		1	0.520	0.0169		0.503	1698.8	1.6554		
2534	0.000704	1637	0		2	0.532			0.516	1707.3	1.6886		
3025	0.00084	1643	0.001		3	0.537			0.520	1715.2	1.6965		
3524	0.000979	1645	0.001	PROM						1707.1	1.6802		
4024	0.001118	1649	0										
4524	0.001257	1651	0		1	ime Lag	0.147202	hs					
5024	0.001396	1653	0				8.83213	min			4.9		
5523	0.001534	1654	0.001		_		529.928	seg			1° secuencia		2° secuencial
6032	0.001070	1057	0			40	0.58881	hs		46	1.22	40	2
0020	0.001812	1050				80	1.17762	hs		80	1.80880873	80	2.588808735
7024	0.001931	1659	0			40	0.58881	hs		40	0.58880873	40	0.588808735
8023	0.00205	1658	0										
8523	0.002368	1659	ŏ										
9023	0.002506	1659	ŏ										
9531	0.002648	1659	0.001										
10023	0.002784	1658	0	Ditusivid	ad								
10522	0.002923	1658	0	1.132E-0	08 0	:m*/s							
11023	0.003062	1657	0										
11522	0.003201	1656	0.001	Solubilid	ad								
12022	0.003339	1657	0	1.1278	81 C	m" (STP)/ cm	' atm						
12522	0.003478	1655	0										
13030	0.003619	1657	0										
13524	0.003757	1656	0										
14021	0.003895	1656	0										
14521	0.004034	1655	0										
15022	0.004173	1657	0										
15521	0.004311	1657	0										

Figura E.23. Hoja de cálculo para N_2 en membrana de PN-BOC₆₀.

Fecha	Gas	Polímero									
09-dic-14	CH4	PN-BOC ₆₀									
				3							
								v = 0.6228x - 0	3087		
diámetro,cm	area,cm*	espesor,µm	volumen,cm [~]	2.5			A	p ² - 1			
1.24	1.20958	60.0	34.8					K -1			
				Ê 2							
				Ê							
Τ[°C]		=	35 ± 0.5	5 1.5							
P [atm]		=	2.1	esi							
				5 1							
		Deer	-14-	0.5							
Tienne	Tiompo	Pres Superior	sion							_	
Tiempo	heres	Superior	Torr	0 -			-			_	
0	noras	1746	0.001	0	2	4		6 8	10	_	
196	5.44F-05	1740	0.001				Tiempo (h)			_	
1921	0.000534	1527	+ ŏ			dp/dt		P ₂ promedio	Permeabilidad		
3910	0.001086	1541	ŏ		Experimental	Fuga	GAS	Torr	Barrers		
5909	0.001641	1546	ŏ		0.623	0.0169	0.607	1587.7	2,1363		
7908	0.002197	1548	ō		2 0.623		0.606	1595.6	2,1232		
9907	0.002752	1549	0.001		3 0.620		0.603	1597.3	2.1096		
11911	0.003309	1551	0	PROM				1593.5	2.1230		
13910	0.003864	1553	0								
15915	0.004421	1554	0		Time Lag	0.494297	/ hs				
17911	0.004975	1554	0			29.6578	min				
19910	0.005531	1555	0.001			1779.47	seg		1° secuencial		2° secuencial
21908	0.006086	1556	0.001		40	1.97719	hs	40	4.7	40	6.5
23931	0.006648	1556	0.001		80	3.95438	hs	80	6.67718876	80	8.477188755
25910	0.007197	1553	0.001		40	1.97719	hs	40	1.97718876	40	1.977188755
27909	0.007753	1554	0								
29909	0.008308	1551	0								
31908	0.008863	1550	0	Difusivida	d						
33913	0.00942	1551	0	3.372E-0	9 cm ⁻ /s						
35912	0.009976	1551	0	Colubilist							
37929	0.010536	1551	0.001	Solubilida		(atm					
39912	0.011087	1553	0.001	4.7852	o un (orr)/ un	aun					
41912	0.011042	1553	0.001								
45511	0.012158	1554	0.001								
47915	0.01331	1556	- ŏ							_	
49914	0.013865	1557	- ñ								
51000	0.014400	1557	-								
51922	0.014423	1557	0							_	
53912	0.0149/6	1559	0								
55911	0.015531	1557	0							_	
57911	0.016086	1557	0.001								
59910	0.016642	1557	0								
61909	0.017197	1557	0								

Figura E.24. Hoja de cálculo para CH₄ en membrana de PN-BOC₆₀.

Fecha	Gas	Polímero									
11-dic-14	CO2	PN-BOC ₆₀		14	14 y = 15.243x - 1.514						
				12					R* = 1		
d:	làrea cm ⁵	action um	high man cm								
diametro,cm	1 20058	espesor,µm	24.9	<u></u> ¹⁰				Λ	1		
1.24	1.20958	00.0	34.0	ē,							
				Ē		7		1 2			
TI°CI		=	35 ± 0.5	. 8 6							
P [atm]		=	21	<u>ع</u> .							
				4							
				2							
						- V		V			
		Pres	sión	0 -							
Tiempo	Tiempo	Superior	Inferior	0	0.5		1	1.5	2 2.5		
ms	horas	lorr 1530	Iorr				Tiempo (h)			
		1538	0								
769	0.000214	15/2								_	
1251	0.000214	1545	0.001			dp/dt		P. promedio	Permeshilidad		
1951	0.000573	1545	0.001		Experimental	αρ/αι Ευσα	GAS	Torr	Barrers		
2550	0.000342	1552	0.001	1	15 269	0.0169	15 252	1610.2	52 9684	_	
3151	0.000875	1555	0.001	2	15.717	0.0105	15,700	1622.6	54,1082		
3750	0.001042	1558	ŏ	3	15.848		15.831	1629.7	54.3216		
4350	0.001208	1560	ŏ	PROM	201010		10.001	1620.8	53,7994		
4967	0.00138	1561	0								
5549	0.001541	1563	0		Time Lag	0.099324	hs				
6150	0.001708	1565	0			5.95946	min				
6750	0.001875	1565	0.001			357.567	seg		1° secuencial		2° secuencial
7349	0.002041	1568	0.001		40	0.3973	hs	40	0.93	40	1.6
7949	0.002208	1570	0		80	0.79459	hs	80	1.32729712	80	1.99729712
8548	0.002374	1567	0.001		40	0.3973	hs	40	0.39729712	40	0.39729712
9163	0.002545	1569	0								
9748	0.002708	1569	0								
10350	0.002875	1569	0								
10551	0.003042	1505	0.001	Ditusivida	d					_	
12151	0.003208	1571	0.001	1 678F-08	cm*/s						
12750	0.003542	1570	0.001	1.0702-00							
13361	0.003711	1572	0.001	Solubilida	d						
13950	0.003875	1573	0	24.36674	cm° (STP)/ cm	' atm					
14549	0.004041	1572	0								
15154	0.004209	1571	0								
15750	0.004375	1572	0								
16349	0.004541	1572	0.001								
16953	0.004709	1573	0								
17562	0.004878	1572	0								
18152	0.005042	1570	0								
18752	0.005209	1573	0.001								

Figura E.25. Hoja de cálculo para CO₂ en membrana de PN-BOC₆₀.